Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Series

2006

Missouri University of Science and Technology

Aerospace Engineering

Aluminosilicate Glasses

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Plasma Modeling For Ultrashort Laser Ablation Of Dielectrics, Lan Jiang, Hai-Lung Tsai Jan 2006

Plasma Modeling For Ultrashort Laser Ablation Of Dielectrics, Lan Jiang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In ultrashort pulse (<10 ps) laser ablation of dielectrics, affected materials are first transformed into absorbing plasma with metallic properties and, then, the subsequent laser-plasma interaction causes material removals. For ultrashort-pulse laser ablation of dielectrics, this study proposes a model using the Fokker-Planck equation for electron density distribution, a plasma model for the optical properties of ionized dielectrics, and quantum treatments for electron heating and relaxation time. The free electron density distribution of the plasma within the pulse duration is then used to determine the ablation crater shape. The predicted threshold fluences and ablation depths for barium aluminum borosilicate and fused silica are in agreement with published experimental data. It is found that the significantly varying optical properties in time and space are the key factors determining the ablation crater shape. The effects of fluence and pulse duration are also studied.