Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 43

Full-Text Articles in Entire DC Network

Properties Of New York/New Jersey Harbor Sediments, K. W. Jones, Huan Feng, E. A. Stren, U. Neuhäusler, J. Osán, N. Marinkovic, Z. Song Nov 2019

Properties Of New York/New Jersey Harbor Sediments, K. W. Jones, Huan Feng, E. A. Stren, U. Neuhäusler, J. Osán, N. Marinkovic, Z. Song

Huan Feng

Sediments found in waterways around the world may contain toxic compounds of anthropogeilic origin that can harm the environment and human health. As a result, it is often necessary to remove them and find disposal methods that are environmentally and economically acceptable. Here, we report on results obtained in an experimental program to characterize the nature of the sediment contamination. The objective was to gain a better understanding of the properties of the sediments to develop better methods for understanding the fate and transport of the contaminants and for improving methods for their removal from the sediments. Our investigations made …


An Evaluation Of Biofield Treatment On Thermal, Physical And Structural Properties Of Cadmium Powder, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana Aug 2015

An Evaluation Of Biofield Treatment On Thermal, Physical And Structural Properties Of Cadmium Powder, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana

Mahendra Kumar Trivedi

Cadmium is widely utilized in nickel-cadmium batteries, stabilizers, and coating applications due to its versatile physico-chemical properties. The aim of present study was to evaluate the impact of biofield treatment on atomic, thermal, and physical properties of cadmium powder. The cadmium powder was divided into two groups, one group as control and another group as treated. The treated group received Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), particle size analyzer, surface area analyzer, and scanning electron microscopy (SEM). XRD results showed significant alteration in lattice parameter, unit cell volume, …


Characterization Of Physical And Structural Properties Of Brass Powder After Biofield Treatment, Mahendra Kumar Trivedi, Gopal Nayak, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana Jul 2015

Characterization Of Physical And Structural Properties Of Brass Powder After Biofield Treatment, Mahendra Kumar Trivedi, Gopal Nayak, Rama Mohan Tallapragada, Omprakash Latiyal, Snehasis Jana

Mahendra Kumar Trivedi

Brass, a copper-zinc (Cu-Zn) alloy has gained extensive attention in industries due to its high corrosion resistance, machinability and strength to weight ratio. The aim of present study was to evaluate the effect of biofield treatment on structural and physical properties of brass powder. The brass powder sample was divided into two parts: control and treated. The treated part was subjected to Mr.Trivedi’s biofield treatment. Control and treated brass powder were characterized using particle size analyser, X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The result showed that the average particle size, d50 and d99 …


Impact Of Biofield Treatment On Physical, Structural And Spectral Properties Of Antimony Sulfide, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal Jul 2015

Impact Of Biofield Treatment On Physical, Structural And Spectral Properties Of Antimony Sulfide, Mahendra Kumar Trivedi, Gopal Nayak, Shrikant Patil, Rama Mohan Tallapragada, Omprakash Latiyal

Mahendra Kumar Trivedi

Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size.

Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure …


Improved Keratinase Production For Feather Degradation By Bacillus Licheniformis Zjuel31410 In Submerged Cultivation, Hui Ni, Qi-He Chen, Feng Chen, Ming-Liang Fu, Ya-Chen Dong, Hui-Nong Cai Mar 2015

Improved Keratinase Production For Feather Degradation By Bacillus Licheniformis Zjuel31410 In Submerged Cultivation, Hui Ni, Qi-He Chen, Feng Chen, Ming-Liang Fu, Ya-Chen Dong, Hui-Nong Cai

Feng Chen

Optimal medium was used to improve the production of keratinase by Bacillus licheniformis ZJUEL31410, which has a promising application in the transformation of feather into soluble protein. The results of single factor design revealed that the concentration of feather at 20 g/l and the initial pH at value 8 was the best for the production of keratinase and the degradation of feather. Ammonia salt and nitrate salt strongly restricted the production of keratinase and the degradation of feather. Result of Box-Behnken design (BBD) experiment which was used to optimize concentrations of glucose, corn steep flour and K2HPO4 for further improvement …


Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam Jan 2015

Structural Investigations And Magnetic Properties Of Sol-Gel Ni0.5zn0.5fe2o4 Thin Films For Microwave Heating, Pengzhao Z. Gao, Evgeny V. Rebrov, Tiny M. W. G. M. Verhoeven, Jaap C. Schouten, Richard Kleismit, Gregory Kozlowski, John S. Cetnar, Zafer Turgut, Guru Subramanyam

Guru Subramanyam

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673–1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the …


Polymer Based Nanocomposites With Nanofibers And Exfoliated Clay, Michael Meador, Darrell Reneker Jul 2014

Polymer Based Nanocomposites With Nanofibers And Exfoliated Clay, Michael Meador, Darrell Reneker

Darrell Hyson Reneker

Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching …


Fracture Toughness Of The Sidewall Fluorinated Carbon Nanotube Epoxy Interface, Nima Rahbar, Yogeeswaran Ganesan, Hossein Salahshoor, Cheng Peng, Valery Khabashesku, Jiangnan Zhang, Avery Cate, Jun Lou Dec 2013

Fracture Toughness Of The Sidewall Fluorinated Carbon Nanotube Epoxy Interface, Nima Rahbar, Yogeeswaran Ganesan, Hossein Salahshoor, Cheng Peng, Valery Khabashesku, Jiangnan Zhang, Avery Cate, Jun Lou

Nima Rahbar

The effects of carbon nanotube (CNT) sidewall fluorination on the interface toughness of the CNT epoxy interface have been comprehensively investigated. Nanoscale quantitative single-CNT pull-out experiments have been conducted on individual fluorinated CNTs embedded in an epoxy matrix, in situ, within a scanning electron microscope (SEM) using an InSEM® nanoindenter assisted micro-device. Equations that were derived using a continuum fracture mechanics model have been applied to compute the interfacial fracture energy values for the system. The interfacial fracture energy values have also been independently computed by modeling the fluorinated graphene-epoxy interface using molecular dynamics simulations and adhesion mechanisms have been …


Corrosion Mechanism Of Copper In Palm Biodiesel Feb 2013

Corrosion Mechanism Of Copper In Palm Biodiesel

A.S. Md Abdul Haseeb

Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu2O, CuO, Cu(OH)2 and CuCO3. Dissolved O2, H2O, CO2 and RCOO- radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel. © 2012 Elsevier Ltd.


The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions Jan 2013

The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions

A.S. Md Abdul Haseeb

The present study was performed to investigate the effects of gamma radiation on the wear behavior of unirradiated and irradiated ultra-high-molecular-weight polyethylene (UHMWPE) against Ti-6Al-4V under dry and lubricated conditions at different applied loads. The UHMWPE specimens were exposed directly to nominal doses of 0, 25, 40, 50, and 100 kGy. Scanning electron microscope (SEM) analysis of the worn surface of UHMWPE and Ti-6Al-4V was performed to understand the mechanism of wear involved between the contact surfaces during wear testing. From the wear test results, there were significant differences between the wear of unirradiated UHMWPE and UHMWPE irradiated at 25, …


The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions Dec 2012

The Wear Behavior Of Cross-Linked Uhmwpe Under Dry And Bovine Calf Serum-Lubricated Conditions

A.S. Md Abdul Haseeb

The present study was performed to investigate the effects of gamma radiation on the wear behavior of unirradiated and irradiated ultra-high-molecular-weight polyethylene (UHMWPE) against Ti-6Al-4V under dry and lubricated conditions at different applied loads. The UHMWPE specimens were exposed directly to nominal doses of 0, 25, 40, 50, and 100 kGy. Scanning electron microscope (SEM) analysis of the worn surface of UHMWPE and Ti-6Al-4V was performed to understand the mechanism of wear involved between the contact surfaces during wear testing. From the wear test results, there were significant differences between the wear of unirradiated UHMWPE and UHMWPE irradiated at 25, …


A Study Of Anodization Process During Pore Formation In Nanoporous Alumina Templates, Z. Wu, C. Richter, L. Menon Oct 2012

A Study Of Anodization Process During Pore Formation In Nanoporous Alumina Templates, Z. Wu, C. Richter, L. Menon

Latika Menon

We have carried out a systematic investigation of the anodization procedure in order to determine the exact chemical mechanism of the dissolution process responsible for pore formation in nanoporous alumina templates. We measured the anodization current as a function of time and compared it with the thickness of porous aluminum oxide layer obtained from cross-section scanning electron microscopy images. From this, we calculated the number of moles of electrons generated per mole of porous alumina grown. This analysis is consistent with a reaction mechanism in which aluminum is converted to aluminum oxide in addition with the direct transfer of aluminum …


Measurement Of Metal Migration On Thick Film Piezoresistors And Their Termination, David V. Kerns, C Song, J L. Davidson, D L. Kinser Apr 2012

Measurement Of Metal Migration On Thick Film Piezoresistors And Their Termination, David V. Kerns, C Song, J L. Davidson, D L. Kinser

David V. Kerns

Metal migration from the thick-film termination can affect not only the electrical characteristics but also the gauge factor or piezoresistive coefficient of thick-film sensors. Four sets of sensors with different ratios were designed to test the influence of the terminal metal migration effects on the gauge factors and resistivity of thick-film resistors. In all the cases, the shortest resistors have a lower gauge factor and a large deviation ofresistances. The longer resistors will have better electrical parameters. SEM (scanning electron microscope) studies showed this interaction at the interface between the terminal and the resistor. The same distance of terminal diffusion …


Degradation Of Automotive Materials In Palm Biodiesel Apr 2012

Degradation Of Automotive Materials In Palm Biodiesel

A.S. Md Abdul Haseeb

As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were …


Effects Of Addition Of Copper Particles Of Different Size To Sn-3.5ag Solder Dec 2011

Effects Of Addition Of Copper Particles Of Different Size To Sn-3.5ag Solder

A.S. Md Abdul Haseeb

No abstract provided.


Effect Of Different Corrosion Inhibitors On The Corrosion Of Cast Iron In Palm Biodiesel Nov 2011

Effect Of Different Corrosion Inhibitors On The Corrosion Of Cast Iron In Palm Biodiesel

A.S. Md Abdul Haseeb

Biodiesel is currently in regular use as an alternative fuel over conventional petroleum diesel. However, corrosion of automotive materials is one of the concerns related to biodiesel compatibility issues. In addition, auto-oxidation of biodiesel can also enhance the corrosiveness of biodiesel. The present study aims to investigate inhibition effect of ethylenediamine (EDA), n-butylamine (nBA), tert-butylamine (TBA) against corrosion of cast iron. Static immersion tests in biodiesel in the presence (100 ppm) and absence of different corrosion inhibitors were carried out at room temperature for 1200 hours. At the end of the test, corrosion characteristic was investigated by weight loss measurements …


Effect Of Different Corrosion Inhibitors On The Corrosion Of Cast Iron In Palm Biodiesel Nov 2011

Effect Of Different Corrosion Inhibitors On The Corrosion Of Cast Iron In Palm Biodiesel

A.S. Md Abdul Haseeb

Biodiesel is currently in regular use as an alternative fuel over conventional petroleum diesel. However, corrosion of automotive materials is one of the concerns related to biodiesel compatibility issues. In addition, auto-oxidation of biodiesel can also enhance the corrosiveness of biodiesel. The present study aims to investigate inhibition effect of ethylenediamine (EDA), n-butylamine (nBA), tert-butylamine (TBA) against corrosion of cast iron. Static immersion tests in biodiesel in the presence (100 ppm) and absence of different corrosion inhibitors were carried out at room temperature for 1200 hours. At the end of the test, corrosion characteristic was investigated by weight loss measurements …


The Effects Of Small Metal Additions (Co,Cu,Ga,Mn,Al,Bi,Sn) On The Magnetocaloric Properties Of The Gd5ge2si2 Alloy, R D. Shull, V Provenzano, A J. Shapiro, A Fu, Michael W. Lufaso, J Karapetrova, G Kletetschka, V Mikula Aug 2011

The Effects Of Small Metal Additions (Co,Cu,Ga,Mn,Al,Bi,Sn) On The Magnetocaloric Properties Of The Gd5ge2si2 Alloy, R D. Shull, V Provenzano, A J. Shapiro, A Fu, Michael W. Lufaso, J Karapetrova, G Kletetschka, V Mikula

Michael W. Lufaso

The structural and magnetic properties of arc-melted and homogenized (1300 °C, 1 h) alloys of Gd5Ge1.9Si2X0.1 (X = Cu, Co, Ga, Mn, Al, Bi, or Sn) were investigated by powder x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and magnetometry. The addition of Cu, Ga, Mn, and Al completely eliminated the large hysteresis losses present in the undoped Gd5Ge2Si2 alloy between 270 and 330 K, broadened the magnetic entropy change ΔSm peak, and shifted its peak value from 275 to 305 K similar to that observed earlier for Gd5Ge1.9Si2Fe0.1. The addition of Bi or Sn had a negligible effect on …


Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet R. Dokmeci, Kai-Tak Wan

Kai-tak Wan

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.


Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan

Mehmet R. Dokmeci

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.


Separation Modes In Microcontacts Identified By The Rate Dependence Of The Pull-Off Force, L. Chen, Nicol E. Mcgruer, George G. Adams, Yan Du May 2011

Separation Modes In Microcontacts Identified By The Rate Dependence Of The Pull-Off Force, L. Chen, Nicol E. Mcgruer, George G. Adams, Yan Du

George G. Adams

We report the observation of two distinct modes of rate-dependent behavior during contact cycling tests. One is a higher pull-off force at low cycling rates and the other is a higher pull-off force at high cycling rates. Subsequent investigation of these contacts using scanning electron microscopy (SEM) demonstrates that these two rate-dependent modes can be related to brittle and ductile separation modes. The former behavior is indicative of brittle separation, whereas the latter accompanies ductile separation. Thus by monitoring the rate dependence of the pull-off force, the type of separation mode can be identified during cycling without interrupting the test …


Separation Modes In Microcontacts Identified By The Rate Dependence Of The Pull-Off Force, L. Chen, Nicol Mcgruer, George Adams, Yan Du May 2011

Separation Modes In Microcontacts Identified By The Rate Dependence Of The Pull-Off Force, L. Chen, Nicol Mcgruer, George Adams, Yan Du

Nicol E. McGruer

We report the observation of two distinct modes of rate-dependent behavior during contact cycling tests. One is a higher pull-off force at low cycling rates and the other is a higher pull-off force at high cycling rates. Subsequent investigation of these contacts using scanning electron microscopy (SEM) demonstrates that these two rate-dependent modes can be related to brittle and ductile separation modes. The former behavior is indicative of brittle separation, whereas the latter accompanies ductile separation. Thus by monitoring the rate dependence of the pull-off force, the type of separation mode can be identified during cycling without interrupting the test …


Effect Of Temperature On The Corrosion Behavior Of Mild Steel Upon Exposure To Palm Biodiesel Apr 2011

Effect Of Temperature On The Corrosion Behavior Of Mild Steel Upon Exposure To Palm Biodiesel

A.S. Md Abdul Haseeb

Recently biodiesel, as an alternative fuel is getting more significance to replace diesel fuel completely or partially. However, corrosion of automotive materials in biodiesel is a major concern as this can reduce engine life. This study aims to investigate the corrosion behavior of mild steel at three different temperatures such as room temperature, 50 and 80 °C. Static immersion tests in B0 (diesel), B50 (50% biodiesel in diesel), B100 (biodiesel) were carried out for 1200 h. At the end of the tests, corrosion characteristic was investigated by weight loss measurements and changes of the exposed metal surface. Fuels were analyzed …


Interfacial Reactions Between Sn-3.5 Ag Solder And Ni-W Alloy Films Jan 2011

Interfacial Reactions Between Sn-3.5 Ag Solder And Ni-W Alloy Films

A.S. Md Abdul Haseeb

Nickel based alloys are currently being investigated in an effort to develop stable barrier films between lead free solder and copper substrate. In this study, interfacial reactions between Ni-W alloy films and Sn-3.5 Ag solder have been investigated. Ni-W alloys films with tungsten content in the range of 5.0-18.0 at.% were prepared on copper substrate by electrodeposition in ammonia citrate bath. Solder joints were prepared on the Ni-W coated substrate at a reflow temperature of 250 °C. The solder joint interface was investigated by Cross-sectional scanning electron microscopy, energy dispersive X-ray spectroscopy and electron back scatter diffraction. It has been …


Interfacial Reaction And Dissolution Behavior Of Cu Substrate In Molten Sn-3.8ag-0.7cu In The Presence Of Mo Nanoparticles Jan 2011

Interfacial Reaction And Dissolution Behavior Of Cu Substrate In Molten Sn-3.8ag-0.7cu In The Presence Of Mo Nanoparticles

A.S. Md Abdul Haseeb

Purpose - In electronic packaging, when solid copper comes in contact with liquid solder alloy, the former dissolves and intermetallic compounds (IMCs) form at the solid-liquid interface. The purpose of this paper is to study the effect of the presence of molybdenum nanoparticles on the dissolution of copper and the formation of interfacial IMC. Design/methodology/approach - Cu wire having a diameter of 250 μm is immersed in liquid composite solders at 250° up to 15 min. Composite solder was prepared by adding various amount of Mo nanoparticles into the Sn-3.8Ag-0.7Cu (SAC) solder paste. The dissolution behavior of Cu substrate is …


Failure Analysis Of Retrieved Uhmwpe Tibial Insert In Total Knee Replacement Dec 2010

Failure Analysis Of Retrieved Uhmwpe Tibial Insert In Total Knee Replacement

A.S. Md Abdul Haseeb

This study involves the failure analysis of an ultra high molecular polyethylene (UHMWPE) tibial insert from Apollo® Total Knee System, which was removed after 10. years of service from 70. years old female patient. The tibial insert was investigated by using a stereoscope, scanning electron microscope (SEM), infinite focus microscope (IFM) and energy disperse spectroscopy (EDS) to characterize the morphology and composition of the bearing surface. Differential scanning calorimetry (DSC) and Fourier transform spectroscopy (FTIR) were employed to characterize the degradation and crystallinity of the component. Gel-permeation chromatography (GPC) was used to measure the polyethylene tibial insert molecular weight. Results …


Comparative Corrosive Characteristics Of Petroleum Diesel And Palm Biodiesel For Automotive Materials Oct 2010

Comparative Corrosive Characteristics Of Petroleum Diesel And Palm Biodiesel For Automotive Materials

A.S. Md Abdul Haseeb

Corrosive characteristics of biodiesel are important for long term durability of engine parts. The present study aims to compare the corrosion behavior of aluminum, copper and stainless steel in both petroleum diesel and palm biodiesel. Immersion tests in biodiesel (B100) and diesel (B0) were carried out at 80 °C for 1200 h. At the end of the test, corrosion characteristic was investigated by weight loss measurements and changes on the exposed metal surface. Surface morphology was examined by optical microscope and scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDS). Fuels were analyzed by using TAN analyzer, FTIR, GCMS and …


Compatibility Of Elastomers In Palm Biodiesel Oct 2010

Compatibility Of Elastomers In Palm Biodiesel

A.S. Md Abdul Haseeb

In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 °C) and at 50 °C for 500 h. At the end of immersion test, …


Influence Of Ni Nanoparticle On The Morphology And Growth Of Interfacial Intermetallic Compounds Between Apr 2010

Influence Of Ni Nanoparticle On The Morphology And Growth Of Interfacial Intermetallic Compounds Between

A.S. Md Abdul Haseeb

TiO2 thin films were deposited on unheated and heated glass substrates at an elevated sputtering pressure of 3 Pa by radio frequency (RF) reactive magnetron sputtering. TiO2 films deposited at room temperature were annealed in air for 1 h at various temperatures ranging from 300 to 600 °C. The structural and optical properties of the thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and ultraviolet-visible-near infrared (UV-VIS-NIR) spectrophotometry. XRD results show that as-grown and post-annealed TiO2 films have anatase crystal structure. Higher substrate and annealing temperatures result in a slight increase of crystallinity. TiO2 …


Study Of The Wear Behaviour Of Al-4.5% Cu-3.4% Fe In Situ Composite: Effect Of Thermal And Mechanical Processing Feb 2007

Study Of The Wear Behaviour Of Al-4.5% Cu-3.4% Fe In Situ Composite: Effect Of Thermal And Mechanical Processing

A.S. Md Abdul Haseeb

Al-Cu-based MMCs reinforced by Al-Fe intermetallics are investigated for their wear behaviour. The composite (Al-4.5 mass% Cu-3.4 mass% Fe) was produced by solidification processing where the Al-Fe-based intermetallic formed in situ in a matrix of mainly Al-Cu alloy. The effects of thermal and mechanical processing, viz., as-cast condition, solution treatment, aging and hot rolling on the wear behaviour of the composites were examined. The composites were characterized by optical microscopy, SEM, microhardness measurements and X-ray diffraction. The wear behaviour of the composites was studied in a pin-on-disc type wear apparatus. The as-cast in situ composite exhibited the highest wear rate. …