Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Selected Works

Christopher Y. Tuan

Impact tests

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Design Of Concrete-Filled Circular Steel Tubes Under Lateral Impact, Yaohua Deng, Christopher Tuan Mar 2014

Design Of Concrete-Filled Circular Steel Tubes Under Lateral Impact, Yaohua Deng, Christopher Tuan

Christopher Y. Tuan

Infrastructures and key members are potentially exposed to accidental loads due to extreme situations such as collisions, impacts, and terrorist bombings. Consequently, the current design concept requires that the structures or key members possess adequate capacities to resist accidental loads. To understand the mechanical response of concrete-filled steel tube (CFT) beams subjected to impact loads, this paper presents numerical simulations on the CFT beam tests in an instrumented drop-weight impact facility using finite element code LS-DYNA. The adequacy of finite element modeling (FEM) has been validated against drop-hammer impact tests in the literature. Based on the dynamic increase factors (DIFs) …


Flexural Behavior Of Concrete-Filled Circular Steel Tubes Under High-Strain Rate Impact Loading, Yaohua Deng, Christopher Tuan Mar 2014

Flexural Behavior Of Concrete-Filled Circular Steel Tubes Under High-Strain Rate Impact Loading, Yaohua Deng, Christopher Tuan

Christopher Y. Tuan

Nine simply supported circular steel concrete-filled tubes (CFTs), two circular steel posttensioned concrete-filled tubes (PTCFTs), and one circular steel fiber–reinforced concrete-filled tube (FRCFT) have been tested in an instrumented drop-weight impact facility. The weight and the height of the drop-weight were varied to cause failure in some test specimens. The failure modes and local damages in those specimens have been investigated extensively. Failure in the steel tubes was commonly tensile facture or rupture along the circumference. Concrete core in the impact area commonly crushed under compression and cracked under tension. The use of prestressing strands and steel fibers significantly restrained …