Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Research outputs 2014 to 2021

Pyrolysis

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Application Of Biochar Derived From Pyrolysis Of Waste Fiberboard On Tetracycline Adsorption In Aqueous Solution, Deliang Xu, Yaxuan Gao, Zixiang Lin, Wenran Gao, Hong Zhang, Karnowo Karnowo, Xun Hu, Hongqi Sun, Syed S. A. Syed-Hassan, Shu Zhang Jan 2020

Application Of Biochar Derived From Pyrolysis Of Waste Fiberboard On Tetracycline Adsorption In Aqueous Solution, Deliang Xu, Yaxuan Gao, Zixiang Lin, Wenran Gao, Hong Zhang, Karnowo Karnowo, Xun Hu, Hongqi Sun, Syed S. A. Syed-Hassan, Shu Zhang

Research outputs 2014 to 2021

In this study, biochars derived from waste fiberboard biomass were applied in tetracycline (TC) removal in aqueous solution. Biochar samples were prepared by slow pyrolysis at 300, 500, and 800°C, and were characterized by ultimate analysis, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), etc. The effects of ionic strength (0–1.0 mol/L of NaCl), initial TC concentration (2.5–60 ppm), biochar dosage (1.5–2.5 g/L), and initial pH (2–10) were systemically determined. The results present that biochar prepared at 800°C (BC800) generally possesses the highest aromatization degree and surface area with abundant pyridinic N (N-6) and …


Evaluation Of Bio-Asphalt Binders Modified With Biochar: A Pyrolysis By-Product Of Mesua Ferrea Seed Cover Waste, Abhinay Kumar, Rajan Choudhary, Rumi Narzari, Rupam Kataki, Sanjay K. Shukla Jan 2018

Evaluation Of Bio-Asphalt Binders Modified With Biochar: A Pyrolysis By-Product Of Mesua Ferrea Seed Cover Waste, Abhinay Kumar, Rajan Choudhary, Rumi Narzari, Rupam Kataki, Sanjay K. Shukla

Research outputs 2014 to 2021

With growing global concerns related to energy security and sustainability, interest in bio-fuels has increased significantly. Production of biofuel mostly begins with pyrolysis, a process that converts the biomass to liquid biooil, solid biochar and gases. A large amount of carbonaceous biochar is generated as a by-product during the pyrolysis. However, no major effort has been made in the past decade to utilize the biochar in pavement applications, especially as a bio-modifier to asphalt binders. In this study, an attempt was made to evaluate the carbonaceous biochar, obtained during bio-fuel production through pyrolysis of Mesua ferrea seed cover waste, as …