Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Global Acetylation Dynamics In The Heat Shock Response Of Saccharomyces Cerevisiae, Rebecca E. Hardman Dec 2019

Global Acetylation Dynamics In The Heat Shock Response Of Saccharomyces Cerevisiae, Rebecca E. Hardman

Graduate Theses and Dissertations

All organisms face a constant barrage of environmental stresses. Single-cell organisms such as Saccharomyces cerevisiae, or common Baker’s yeast, must rely solely on cellular responses in order to survive. This response must occur in a rapid and highly coordinated manner to quickly inhibit all unnecessary processes and shuttle all available resources to those necessary for survival. One method that cells utilize for rapid protein regulation is the use of post-translational modifications. Enzymes within the cell add or remove a variety of chemical modifications, thus altering the local chemical environment of a protein. This creates a conformational change in the protein …


Natural Variation In Yeast Stress Signaling Reveals Multiple Paths To Similar Phenotypes, Amanda N. Scholes Dec 2019

Natural Variation In Yeast Stress Signaling Reveals Multiple Paths To Similar Phenotypes, Amanda N. Scholes

Graduate Theses and Dissertations

Natural environments are dynamic, and organisms must sense and respond to changing conditions. One common way organisms deal with stressful environments is through gene expression changes, allowing for stress acclimation and resistance. Variation in stress sensing and signaling can potentially play a large role in how individuals with different genetic backgrounds are more or less resilient to stress. However, the mechanisms underlying how gene expression variation affects organismal fitness is often obscure.

To understand connections between gene expression variation and stress defense phenotypes, we have been exploiting natural variation in Saccharomyces cerevisiae stress responses using a unique phenotype called acquired …