Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson Aug 2013

Fully Coupled Fluid And Electrodynamic Modeling Of Plasmas: A Two-Fluid Isomorphism And A Strong Conservative Flux-Coupled Finite Volume Framework, Richard Joel Thompson

Doctoral Dissertations

Ideal and resistive magnetohydrodynamics (MHD) have long served as the incumbent framework for modeling plasmas of engineering interest. However, new applications, such as hypersonic flight and propulsion, plasma propulsion, plasma instability in engineering devices, charge separation effects and electromagnetic wave interaction effects may demand a higher-fidelity physical model. For these cases, the two-fluid plasma model or its limiting case of a single bulk fluid, which results in a single-fluid coupled system of the Navier-Stokes and Maxwell equations, is necessary and permits a deeper physical study than the MHD framework. At present, major challenges are imposed on solving these physical models …


The Microchannel Flow Of A Micropolar Fluid, Guohua Liu Oct 1999

The Microchannel Flow Of A Micropolar Fluid, Guohua Liu

Doctoral Dissertations

Micro-channel flows have been computed to investigate the influence of Navier-Stokes formulation for the slip-flow boundary condition, and a micro-polar fluid model, respectively.

The results of the slip boundary condition show that the current methodology is valid for slip-flow regime (i.e., for values of Knudsen number less than approximately 0.1). Drag reduction phenomena apparent in some micro-channels can be explained by slip-flow theory. These results are in agreement with some computations and experiments.

An ad hoc micro-polar fluid model is developed to investigate the influence of micro effects, such as micro-gyration, in micro-scale flows. The foundation of the ad hoc …