Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Browse all Theses and Dissertations

Theses/Dissertations

2020

Ph.D. in Engineering

Articles 1 - 11 of 11

Full-Text Articles in Entire DC Network

Processing And Properties Of Multifunctional Two Dimensional Nanocomposites Based On Graphene Nano-Flakes, Mohammed K. Mohammed Jan 2020

Processing And Properties Of Multifunctional Two Dimensional Nanocomposites Based On Graphene Nano-Flakes, Mohammed K. Mohammed

Browse all Theses and Dissertations

The unique properties of graphene have directed researchers to study and characterize this new material. Graphene production and graphene based materials have been widely explored and developed in the past decade. Most research has aimed at developing scalable, environmentally friendly, and cheap procedures to produce defect-free graphene that can be used in various applications such as mechanical properties enhancement and multifunctional material. The challenge is processing such material on a scale suitable for engineering applications such as advanced photonics and advanced electronics. In this study, we investigate a new processing technique based on Langmuir-Blodgett (LB) Technique. We managed to produce …


Hierarchical Hybrid Materials From Flexible Fabric Substrates, Wenhu Wang Jan 2020

Hierarchical Hybrid Materials From Flexible Fabric Substrates, Wenhu Wang

Browse all Theses and Dissertations

The goal of this project is to investigate fabrication approaches and structure-property relationships of porous and flexible hierarchical hybrid solids suitable for advanced surface-active devices. Multi-scale hierarchical carbon materials are being fabricated by strong covalent attachment of multiwall carbon nanotube(MWCNTs) arrays on flexible carbon fabric substrates in order to enhance the surface area per unit volume. This was done using chemical vapor deposition (CVD) after functionalizing the surface with a plasma-derived nano-oxide coating. Structural and chemical characterization is performed using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and x-ray photoelectron spectroscopy(XPS). Surface area estimates have been made by building structural models …


Joint Shelf Design And Shelf Space Allocation Problem For Retailers, Hakan Gecili Jan 2020

Joint Shelf Design And Shelf Space Allocation Problem For Retailers, Hakan Gecili

Browse all Theses and Dissertations

Although the retail business has been exploring innovative ways to engage shoppers, the COVID-19 pandemic has sped up their effort. Because of its unique benefits, physical stores will continue to remain an integral part of the overall retail business. However, to stay competitive, retailers will be forced to effectively utilize their available space in physical store (and even reduce it if need be), while offering a reasonably large assortment of products on their shelves. For many such retailers, the design of planograms – visual representation of products on shelves – is still driven by prior experience and intuition. Further, existing …


Developing Equivalent Solid Model For Lattice Cell Structure Using Numerical Approaches, Tahseen Abdulridha Ali Al-Wattar Jan 2020

Developing Equivalent Solid Model For Lattice Cell Structure Using Numerical Approaches, Tahseen Abdulridha Ali Al-Wattar

Browse all Theses and Dissertations

Lattice cell structures (LCS) are the engineered porous structures that are composed of periodic unit cells in three dimensions. Such structures have many scientific and engineering applications, such as in vessel gas technology, thermal systems, mechanical and aerospace structures, etc. for which lightweight, high strength, and energy absorption capabilities are essential properties. To have an optimized design, finite element analysis (FEA) based computational approach can be used for detailed analysis of such structures, sometime in full scale. However, developing a large-scale model for a lattice-based structure is computationally expensive. If an equivalent solid FE model can be developed using the …


Design And Implementation Of Simplified Sliding-Mode Control Of Pwm Dc-Dc Converters For Ccm, Humam A. Al-Baidhani Jan 2020

Design And Implementation Of Simplified Sliding-Mode Control Of Pwm Dc-Dc Converters For Ccm, Humam A. Al-Baidhani

Browse all Theses and Dissertations

The pulse-width modulated (PWM) dc-dc converters play a vital role in several industrial applications that include motor drives, electric vehicles, dc distribution systems, and consumer electronics. The switched-mode power converters step the input voltage up or down based on their typology and provide a regulated output voltage. The stability and regulation performance of a power converter can tremendously be improved via a suitable control design. However, due to the nonlinearity of the power converters and the presence of the line and load disturbances, the design of a robust and low-cost control circuit becomes a challenging task. The sliding-mode control of …


Hierarchical Structure, Properties And Bone Mechanics At Macro, Micro, And Nano Levels, Farah Mohammed Ridha Abdulateef Hamandi Jan 2020

Hierarchical Structure, Properties And Bone Mechanics At Macro, Micro, And Nano Levels, Farah Mohammed Ridha Abdulateef Hamandi

Browse all Theses and Dissertations

This research focuses on the hierarchical structure of bone and associated mechanical properties at different scales to assess damage accumulation leading to premature failure, with or without instrumentation. In this work, an attempt was made to develop a framework of macro, micro, and nano damage accumulation models and implementing them to derive mechanical behavior of the bone. At macrolevel, retrospective evaluation of 313 subjects was conducted, and the damage of bone tissue was investigated with respect to subject demography including age, gender, race, body mass index (BMI), height and weight, and their role in initiating fracture. Experimental data utilized 28 …


A First Principles Study Of Pipe Diffusion In Nickel, Luke J. Wirth Jan 2020

A First Principles Study Of Pipe Diffusion In Nickel, Luke J. Wirth

Browse all Theses and Dissertations

Vacancy-mediated diffusion along dislocations, often referred to as pipe diffusion, can contribute to creep deformation of metals in many engineering applications. This process is studied along an a/2⟨1 -1 0⟩ screw dislocation in fcc Ni using a density functional theory approach. An accurate geometrical configuration of the screw dislocation core, dissociated into Shockley partial dislocations and separated by a stacking fault, was previously derived using a lattice Green's function technique. Activation energies and frequencies are calculated for atom-vacancy exchanges that contribute to diffusion around and along one of the partial cores. This analysis reveals the significant role of the sites …


Designing New Generations Of Bcc Lattice Structures And Developing Scaling Laws To Predict Compressive Mechanical Characteristics And Geometrical Parameters, Hasanain Abdulhadi Jan 2020

Designing New Generations Of Bcc Lattice Structures And Developing Scaling Laws To Predict Compressive Mechanical Characteristics And Geometrical Parameters, Hasanain Abdulhadi

Browse all Theses and Dissertations

Lattice structures (LSs) have been exploited for wide range applications including mechanical, thermal, and biomedical structures because of their unique attributes combining the light weight and relatively high mechanical properties. The first goal of this research is to investigate the effect of strut orientation and length on the compressive mechanical characteristics of body centered cubic (BCC) LS subjected to a quasi-static axial compressive loading using finite element analyses (FEA). In this study, two lattice generations were built and analyzed in commercial finite element (FE) software, ABAQUS/CAE 2016 using “smart procedure”, a meshing technique which was developed for this research to …


Small-Signal Analysis Of Non-Isolated Ćuk Dc-Dc Converter, Lokesh Kathi Jan 2020

Small-Signal Analysis Of Non-Isolated Ćuk Dc-Dc Converter, Lokesh Kathi

Browse all Theses and Dissertations

In the future, renewable energy sources will be the primary energy sources due to non-renewable energy resources depletion. Having a sustainable energy source as an input voltage source for the electrical system is essential. Its applications can be widely used in hybrid solar-wind energy systems, electric vehicles, etc. This converter is invented and named after by Slobodan Cuk. An analysis describing a detailed steady-state operation of the non-isolated Cuk converter operating in continuous-conduction mode (CCM) is provided. The expected steady-state current and voltage waveforms across different components of the converter are analytically derived. Design equations for the converter are provided. …


Primary Processing Parameters And Their Influence On Porosity And Fatigue Life Of Additively Manufactured Alloy 718, Luke C. Sheridan Jan 2020

Primary Processing Parameters And Their Influence On Porosity And Fatigue Life Of Additively Manufactured Alloy 718, Luke C. Sheridan

Browse all Theses and Dissertations

In many structural applications void-like defects cause significant performance debits which call for component redesign or post-processing to account for or remove the defects. For laser powder bed fusion (LPBF) processes, it has been shown that many of these features and their size and shape characteristics are controllable through LPBF process parameter manipulation. For design efforts, however, it is necessary to understand the direct influences of processing on the formation of porosity and the role that individual pores and porosity distributions have on the properties and performance of AM components. Additionally, design criteria must be established to facilitate implementation of …


Additive Manufacturing Techniques To Enhance The Performance Of Electronics Created On Flexible And Rigid Substrates, Aamir Hamed Hamad Jan 2020

Additive Manufacturing Techniques To Enhance The Performance Of Electronics Created On Flexible And Rigid Substrates, Aamir Hamed Hamad

Browse all Theses and Dissertations

Different additive manufacturing (AM) methods including fused deposition modeling (FDM) and piezoelectrical drop on demand (DOD) inkjet printing have been used in printed electronics for easy production, easy integration, better performance, and low cost. These methods have been used in producing everyday smart printed electronics such as conformal antennas (planner and non-planar antennas), sensors, actuators, and solar cells created on flexible and rigid substrates. The performance of printed electronics strongly depends on printing techniques and printing resolution that enhance their electrical and mechanical properties. In this dissertation, 3D and surface printing techniques were used to enhance the performance of printed …