Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Design Of A Novel Wearable Ultrasound Vest For Autonomous Monitoring Of The Heart Using Machine Learning, Garrett G. Goodman Jan 2020

Design Of A Novel Wearable Ultrasound Vest For Autonomous Monitoring Of The Heart Using Machine Learning, Garrett G. Goodman

Browse all Theses and Dissertations

As the population of older individuals increases worldwide, the number of people with cardiovascular issues and diseases is also increasing. The rate at which individuals in the United States of America and worldwide that succumb to Cardiovascular Disease (CVD) is rising as well. Approximately 2,303 Americans die to some form of CVD per day according to the American Heart Association. Furthermore, the Center for Disease Control and Prevention states that 647,000 Americans die yearly due to some form of CVD, which equates to one person every 37 seconds. Finally, the World Health Organization reports that the number one cause of …


Hierarchical Structure, Properties And Bone Mechanics At Macro, Micro, And Nano Levels, Farah Mohammed Ridha Abdulateef Hamandi Jan 2020

Hierarchical Structure, Properties And Bone Mechanics At Macro, Micro, And Nano Levels, Farah Mohammed Ridha Abdulateef Hamandi

Browse all Theses and Dissertations

This research focuses on the hierarchical structure of bone and associated mechanical properties at different scales to assess damage accumulation leading to premature failure, with or without instrumentation. In this work, an attempt was made to develop a framework of macro, micro, and nano damage accumulation models and implementing them to derive mechanical behavior of the bone. At macrolevel, retrospective evaluation of 313 subjects was conducted, and the damage of bone tissue was investigated with respect to subject demography including age, gender, race, body mass index (BMI), height and weight, and their role in initiating fracture. Experimental data utilized 28 …


Renca Macrobeads Inhibit Tumor Cell Growth Via Egfr Activation And Regulation Of Mef2 Isoform Expression, Prithy Caroline Martis Jan 2020

Renca Macrobeads Inhibit Tumor Cell Growth Via Egfr Activation And Regulation Of Mef2 Isoform Expression, Prithy Caroline Martis

Browse all Theses and Dissertations

Tumors are heterogeneous systems, whose growth is influenced by intrinsic properties of malignant cells, external systemic factors (i.e. immune, neural, endocrine, etc.), and the dynamic interactions between tumor cells and their microenvironment. Given the inherent complexity of cancers, combined with the continual evolution of tumors and the development of treatment resistance, a precision medicine approach may not provide an optimal clinical response. Exploring a new paradigm that focuses on regulating cancer as a system may not only control tumor progression but also address the extraordinary challenges of tumor heterogeneity and disease recurrence in order to improve clinical outcomes. As a …


Topical Photodynamic Therapy Generates Microvesicle Particles, Oladayo Ayobami Oyebanji Jan 2020

Topical Photodynamic Therapy Generates Microvesicle Particles, Oladayo Ayobami Oyebanji

Browse all Theses and Dissertations

Photodynamic therapy (PDT) involves the use of light at an appropriate wavelength acting on a photosensitizing chemical to cause cell death via generation of reactive oxygen species. PDT has been useful in the management of skin conditions (like acne, psoriasis) and cancers like superficial skin, esophageal and non-small cell lung cancers. In addition to these therapeutic effects, previous murine studies from our group have demonstrated that topical PDT induces immunosuppression in vivo. Thus, topical PDT of skin can generate systemic effects through unknown mechanisms. Our group showed that PDT induces an immunosuppressive effect which occurs partly via Platelet-Activating Factor Receptor …


Assessment Of In Vivo Muscle Force In The R6/2 Mouse Model Of Huntington's Disease Using Newly Designed Force Rig, Steven Russell Alan Burke Jan 2020

Assessment Of In Vivo Muscle Force In The R6/2 Mouse Model Of Huntington's Disease Using Newly Designed Force Rig, Steven Russell Alan Burke

Browse all Theses and Dissertations

In this thesis, we develop a system to study in vivo muscle function in a mouse model of Huntington’s disease that allows for the recording of muscle force by stimulating the motor nerves or the muscles directly after a nerve block. This allows us to distinguish between defects in the nerve, such as problems with vesicle release, and primary muscle defects, such as altered intracellular calcium homeostasis. We hypothesize that there are primary defects in R6/2 skeletal muscle that are separate from neurodegeneration or defects in the CNS. In this case, we should see defects in muscle force generation during …


Ultraviolet-B Radiation Induces Release Of Bioactive Microvesicle Particles In Keratinocytes Via Platelet-Activating Factor And Acid Sphingomyelinase, Langni Liu Jan 2020

Ultraviolet-B Radiation Induces Release Of Bioactive Microvesicle Particles In Keratinocytes Via Platelet-Activating Factor And Acid Sphingomyelinase, Langni Liu

Browse all Theses and Dissertations

Ultraviolet-B (UV-B) radiation is one of the most common environmental factors and is known to induce the production of bioactive agents that cause several diseases including skin cancer. UVB exposure stimulates the production of a phospholipid activator, platelet-activating factor (PAF), and its analogs in keratinocytes that activate the PAF receptor (PAF-R) resulting in acute inflammatory and delayed systematic immunosuppressive effects. However, as UVB only penetrates into the skin epidermal layer, the detailed mechanisms of how UVB exerts systematic effects remains unclear. Previously we found that UVB induces keratinocytes to release large numbers of microvesicle particles (MVPs). These small membrane-bound particles …


Computational Assessment Of Aortic Valve Function And Mechanics Under Hypertension, Saurav Kadel Jan 2020

Computational Assessment Of Aortic Valve Function And Mechanics Under Hypertension, Saurav Kadel

Browse all Theses and Dissertations

Calcific aortic valve disease (CAVD), the most common valvular heart disorder, is associated with complications such as stroke, heart attack, aortic aneurysm, left ventricular hypertrophy, and ultimately death. While hypertension has been identified as a major risk factor for CAVD, the mechanisms by which it may promote calcification are still unknown. Given the sensitivity of valvular tissue to mechanical stress alterations, the hemodynamic abnormalities linked to hypertension may play a role in the development of CAVD. Further, the effects of hypertension on the left ventricular functionality and coronary flow resistance remain largely uninvestigated. Hence, the objectives of this thesis were …