Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Investigating The Annual Water Balance Of A High-Altitude Watershed Using Near-Real Time Lidar Data Integration Into A Physically Based Snowmelt Model, Andrew R. Hedrick Dec 2018

Investigating The Annual Water Balance Of A High-Altitude Watershed Using Near-Real Time Lidar Data Integration Into A Physically Based Snowmelt Model, Andrew R. Hedrick

Boise State University Theses and Dissertations

Knowledge of the amount of water stored in the mountain snowpack is crucial for flood prevention, drought mitigation, and energy production in the Western United States. In modeling terms, the most important component of the hydrologic water balance is the precipitation input to the system. Determining where and how much precipitation falls in mountain catchments, however, is the most difficult problem with regards to closing the water balance. The work presented in this dissertation details the modeling portion of the NASA Airborne Snow Observatory (ASO) using the iSnobal physically based snow model. This combination of remote sensing and modeling at …


Utilizing Satellite Fusion Methods To Assess Vegetation Phenology In A Semi-Arid Ecosystem, Megan Gallagher Aug 2018

Utilizing Satellite Fusion Methods To Assess Vegetation Phenology In A Semi-Arid Ecosystem, Megan Gallagher

Boise State University Theses and Dissertations

Dryland ecosystems cover over 40% of the Earth’s surface, and are highly heterogeneous systems dependent upon rainfall and temperature. Climate change and anthropogenic activities have caused considerable shifts in vegetation and fire regimes, leading to desertification, habitat loss, and the spread of invasive species. Modern public satellite imagery is unable to detect fine temporal and spatial changes that occur in drylands. These ecosystems can have rapid phenological changes, and the heterogeneity of the ground cover is unable to be identified at course pixel sizes (e.g. 250 m). We develop a system that uses data from multiple satellites to model finer …


Remote Sensing For Management Of Invasive Plants In Great Lakes Coastal Wetlands, Matthew James Unitis Aug 2018

Remote Sensing For Management Of Invasive Plants In Great Lakes Coastal Wetlands, Matthew James Unitis

Boise State University Theses and Dissertations

Great Lakes coastal wetlands are some of the most crucial ecosystems to biodiversity in the Great Lakes Basin, yet suffer increasing degradation due to invasive plants. Wetland plant invasions can be controlled in their initial stages, but early detection of invasive plants using field surveys are often untenable due to budget constraints. Remote sensing techniques offer solutions to management objectives during the early stages of invasion on a landscape scale due to their ability to cheaply create spatially explicit information about plant distributions. Some invasive plants, such as Typha x. glauca, are conspicuous on a large scale, and can be …


Identifying Evidence For Explosive Volcanism On Mars Through Geomorphologic And Thermophysical Observations, Gabriel Cecilio Garcia May 2018

Identifying Evidence For Explosive Volcanism On Mars Through Geomorphologic And Thermophysical Observations, Gabriel Cecilio Garcia

Boise State University Theses and Dissertations

Accurately identifying the products of explosive volcanism on Mars is critical for unraveling the evolution of the martian crust and interior. Recent work using high-resolution datasets suggest explosive volcanic processes may have dominated over effusive activity in early martian history. However, distinguishing the products of explosive volcanism from non-volcanic sediments remains challenging since both are similar in thermophysical and geomorphologic datasets.

The objective of this study is to identify geomorphologic and thermophysical characteristics of possible explosive volcanic deposits on Apollinaris Mons, one of the best-known candidates for explosive volcanism on Mars, using visible and thermal infrared imaging datasets. These geomorphic …