Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Entire DC Network

Laser Stimulated Dynamic Thermal Imaging System For Tumor Detection, Hongyu Meng Dec 2021

Laser Stimulated Dynamic Thermal Imaging System For Tumor Detection, Hongyu Meng

McKelvey School of Engineering Theses & Dissertations

Laser stimulated dynamic thermal imaging system for tumor detectionby Hongyu Meng Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2021 Professor Samuel Achilefu, Chair Recent advances in infrared sensor technology have enabled the rapid application of thermal imaging in materials science, security and medicine. Relying on the infrared characteristics of living systems, thermal imaging has been used to generate individual heat maps, detect inflammation and tumor. As an imaging system, thermal imaging has the advantages of portability, real-time, non-invasive, and non-contact. But the low specificity of thermal imaging hinders its wide clinical application.

Unfortunately, label-free DTI is …


Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc Aug 2021

Uncovering A Myc-Driven Tumor-Suppressive Program In Proliferating Lymphocytes, Elena Tonc

Arts & Sciences Electronic Theses and Dissertations

Rapid cell proliferation is a hallmark feature of adaptive immune cells lymphocytes. It is essential for the establishment of diverse antigen receptor repertoires and amplification of antigen-specific immune responses. While such proliferation is beneficial for host protection from infections and cancers, it inevitably elevates the risk of oncogenic transformation. In developing and germinal center B lymphocytes, the risk is further increased by endogenous, genomic insults due to antigen receptor rearrangements and somatic mutations, with which expression of the proto-oncogene c-MYC is closely associated. Nonetheless, frequencies of cancers originated from B lymphocytes are relatively low, suggesting that they are protected from …


Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez May 2021

Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez

Arts & Sciences Electronic Theses and Dissertations

Follicular lymphoma (FL) is the most common indolent non-Hodgkin’s lymphoma; however, it remains incurable with conventional therapies and is poorly responsive to checkpoint blockade. FL arises from B-lymphocytes and develops slowly (and often asymptomatically). A major research focus has been on how to avoid chemotherapy treatments, to limit the potential development of treatment-related side effects, and the risk of therapy-related second cancers. FL also carries an approximately 30% lifetime risk of transforming from an iNHL to more destructive lymphomas, which are associated with poorer prognosis. The most common transformation results in diffuse large B-cell lymphoma (DLBCL). However, many patients may …


Mechanisms Of Cross-Presentation By Cdc1s, Derek James Theisen Aug 2020

Mechanisms Of Cross-Presentation By Cdc1s, Derek James Theisen

Arts & Sciences Electronic Theses and Dissertations

Classical dendritic cells (cDCs) are specialized antigen presenting cells that can be divided into distinct subsets based on the types of pathogens they respond to and the type of immune response they generate. The cDC1 subset is specialized in priming CD8 T cell responses through the process of cross-presentation. During cross-presentation, exogenous protein antigens are taken up by cDC1 and presented on MHCI molecules, allowing for the priming of CD8 T cells during conditions when DCs themselves are not directly infected. The ability to cross-present in vivo is unique to cDC1, and is essential for anti-viral responses and rejection of …


Multi-Omics Integration For Gene Fusion Discovery And Somatic Mutation Haplotyping In Cancer, Steven Mason Foltz May 2020

Multi-Omics Integration For Gene Fusion Discovery And Somatic Mutation Haplotyping In Cancer, Steven Mason Foltz

Arts & Sciences Electronic Theses and Dissertations

Cancer is a disease caused by changes to the genome and dysregulation of gene expression. Among many types of mutations, including point mutations, small insertions and deletions, large scale structural variants, and copy number changes, gene fusions are another category of genomic and transcriptomic alteration that can lead to cancer and which can serve as therapeutic targets. We studied gene fusion events using data from The Cancer Genome Atlas, including over 9,000 patients from 33 cancer types, finding patterns of gene fusion events and dysregulation of gene expression within and across cancer types. With data from the CoMMpass study (Multiple …


Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter Aug 2019

Mechanosensitive Epithelial Cell Scattering And Migration On Layered Matrices, Christopher Michael Walter

McKelvey School of Engineering Theses & Dissertations

Epithelial cells form multi-layered tissue scaffolding that makes up every organ in the body. Along with epithelial cells, the basement membrane (BM) and connective tissue are composed of various proteins that sculpt the organs and protect them from foreign macromolecules. Epithelial cells respond to various cues, both chemical and mechanical, from their surrounding matrices to aid in maintenance and repair of these layers through degradation and deposition of extracellular matrix (ECM) proteins. In cancer progression, epithelial cells lose their normal function of supporting tissue structure and instead adopt more aggressive behaviors through an epithelial-to-mesenchymal transition (EMT) of their cellular traits. …


The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis May 2019

The Role Of Ifrd1 In The Recruitment And Function Of Reserve Stem Cells In Regeneration And Cancer, Mark Anthony Lewis

Arts & Sciences Electronic Theses and Dissertations

Mature cells can reprogram into a proliferative, progenitor-like state to repair tissue following injury and inflammation. Differentiated cells in diverse tissues can become proliferative via a dedicated, evolutionarily conserved program we termed paligenosis. We detailed how paligenosis occurs, in both gastric chief and pancreatic acinar cells, in a step-wise manner that involves: 1) autodegradation of mature cell components; 2) re-expression of progenitor genes; 3) re-entry into the cell cycle. This process is governed by mTORC1, a fundamental cellular energy sensor and regulator of protein translation. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re-entry at S-phase. …


Development Of Novel Tumor-Targeted Compounds For Boron Neutron Capture Therapy, Micah John Luderer May 2019

Development Of Novel Tumor-Targeted Compounds For Boron Neutron Capture Therapy, Micah John Luderer

Arts & Sciences Electronic Theses and Dissertations

Glioblastoma multiforme (GBM) represents the most common primary brain tumor among adults. Despite surgical resection and aggressive chemoradiotherapy regimens, the current 2- and 5-year survival rates are only 27% and 9.8%, respectively. The low survival stems from the poor response to conventional therapy and underscores the critical need to develop new therapeutic approaches for GBM treatment. The high recurrence rate observed in GBM is in part attributed to the hypoxic (poorly oxygenated) tumor microenvironment. Hypoxic tumor conditions have been shown to increase metastasis, promote angiogenesis, and confer resistance to chemotherapy and radiation.

Hypoxic tissues are inherently radiation resistant due to …


The Splice Is Not Right: Splice-Site-Creating Mutations In Cancer Genomes, Reyka Glencora Jayasinghe Dec 2018

The Splice Is Not Right: Splice-Site-Creating Mutations In Cancer Genomes, Reyka Glencora Jayasinghe

Arts & Sciences Electronic Theses and Dissertations

Accurate interpretation of cancer mutations in individual tumors is a prerequisite for precision medicine. Large-scale sequencing studies, such as The Cancer Genome Atlas (TCGA) project, have worked to address the functional consequences of genomic mutations, with the larger goal of determining the underlying mechanisms of cancer initiation and progression. Many studies have focused on characterizing non-synonymous somatic mutations that alter amino acid sequence, as well as splice disrupting mutations at splice donors and acceptors. Current annotation methods typically classify mutations as disruptors of splicing if they fall on the consensus intronic dinucleotide splice donor, GT, the splice acceptor, AG. Splice …


Multi-Omics Portraits Of Cancer, Kuan-Lin Huang May 2018

Multi-Omics Portraits Of Cancer, Kuan-Lin Huang

Arts & Sciences Electronic Theses and Dissertations

Precision oncology demands accurate portrayal of a disease at all molecular levels. However, current large-scale studies of omics are often isolated by data types. I have been developing computational tools to conduct integrative analyses of omics data, identifying unique molecular etiology in each tumor. Particularly, this dissertation presents the following contributions to the computational omics of cancer: (1) uncovering the predisposition landscape in 33 cancers and how germline genome collaborates with somatic alterations in oncogenesis; (2) pioneering methods to combine genomic and proteomic data to identify treatment opportunities; and (3) revealing selective phosphorylation of kinase-substrate pairs. These findings advance our …


Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som May 2018

Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som

McKelvey School of Engineering Theses & Dissertations

Enormous progress has been made to treat cancer, and yet the mortality rate of cancer remains unacceptably high. High clinical resistance to molecularly targeted therapeutics has pushed interest again towards inhibiting universal biochemical hallmarks of cancer. Recent evidence suggests that malignant tumors acidify the local extracellular environment to activate proteases for degrading the tumor matrix, which facilitates metastasis, and explains why more aggressive tumors are more acidic. Current therapies have only focused on using the low pH for enhancing drug release in tumors, thereby still relying on the traditional paradigm of intracellular inhibition of pathways, a method that continues to …


Tumors Interrupt Irf8-Mediated Dendritic Cell Development To Overcome Immune Surveillance, Melissa Ann Meyer May 2018

Tumors Interrupt Irf8-Mediated Dendritic Cell Development To Overcome Immune Surveillance, Melissa Ann Meyer

Arts & Sciences Electronic Theses and Dissertations

Tumors employ multiple mechanisms to evade immune surveillance. One mechanism is tumor-induced myelopoiesis, which expands immune suppressive granulocytes and monocytes to create a protective tumor niche shielding even antigenic tumors. As myeloid cells and immune-stimulatory conventional dendritic cells (cDCs) are derived from the same progenitors, it is logical that tumor-induced myelopoiesis might also impact cDC development. The cDC subset cDC1 is marked by CD141 in humans and CD103 or CD8α in mice. cDC1s act by cross presenting antigen and activating CD8+ T cells. Given these functions, CD103+ cDC1s can support anti-tumor CD8+ T cell responses. However, CD103+ cDC1 numbers are …


Dna Replication Challenges: Telomeres And R Loops, Shankar Parajuli Aug 2017

Dna Replication Challenges: Telomeres And R Loops, Shankar Parajuli

Arts & Sciences Electronic Theses and Dissertations

Faithful DNA replication and repair are essential for maintaining genome stability and preventing various diseases including cancer. Both processes are executed by numerous redundant mechanisms to ensure that these processes are uninterrupted even when a primary mechanism fails. Despite this, they are not immune to challenges and failures leading to DNA damage and genome instability. These problems are more evident at the difficult-to-replicate regions of the genome such as the telomeres that cap and protect linear chromosome ends. Additionally, topological structures such as RNA:DNA hybrids, commonly referred to as R loops, can also present severe challenges to the DNA replication …


Mechanisms And Regulation Of Resection In Dna Damage Response, Sharad C. Paudyal Aug 2017

Mechanisms And Regulation Of Resection In Dna Damage Response, Sharad C. Paudyal

Arts & Sciences Electronic Theses and Dissertations

Deoxyribonucleic acid (DNA) encodes genetic information essential for cell survival and function. However, it is constantly under assault from endogenous and exogenous damaging agents that not only threaten our own survival but also affect the faithful transmission of genetic information to our offspring. Double-strand breaks (DSBs) are one of the most hazardous forms of DNA damage, which if unrepaired or improperly repaired could lead to plethora of systemic human diseases including cancer. To deal with this problem, cells have evolved with a mechanism called DNA damage response (DDR) to detect, signal, and repair the breaks by inducing multiple cellular events. …


Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson Aug 2017

Photodynamic Therapy: Agents And Mechanisms, Rebecca Claire Gilson

McKelvey School of Engineering Theses & Dissertations

Despite enormous efforts, cancer remains a leading cause of morbidity and mortality world-wide. The main challenges currently facing cancer therapy include lack of adequate tumor targeting, failure to treat hypoxic tumor cells, and induction therapy resistant tumors. A solution to these limitations can be found in photodynamic therapy (PDT) which combines light and light activatable compounds, photosensitizers (PSs), to produce cytotoxic reactive oxygen species (ROS) to damage tumor tissue. This creates a spatiotemporal therapeutic effect, where cell damage only occurs at the intersection of the PS and light. PDT can treat tumors through unique mechanisms which reduce induction of tumor …


Designing Epigenome Editing Tools To Understand The Functional Role Of Dna Methylation Changes In Cancer, James Mcdonald Aug 2017

Designing Epigenome Editing Tools To Understand The Functional Role Of Dna Methylation Changes In Cancer, James Mcdonald

Arts & Sciences Electronic Theses and Dissertations

DNA methylation is known to silence gene expression in the context of imprinting, X-chromosome inactivation, and retrotransposon silencing. However, the role of DNA methylation in silencing gene expression outside of these contexts is not fully understood. This is especially true in diseases such as cancer, where normal DNA methylation patterns are significantly altered. In breast cancer as well as nearly all cancer types, most of the genome loses DNA methylation while small regions of the genome gain methylation. DNA methylation generally correlates with decreased gene expression when present at a gene promoter. Therefore, these regions of hypo- and hyper-methylation may …


Mri In Cancer: Improving Methodology For Measuring Vascular Properties And Assessing Radiation Treatment Effects In Brain, Chong Duan Aug 2017

Mri In Cancer: Improving Methodology For Measuring Vascular Properties And Assessing Radiation Treatment Effects In Brain, Chong Duan

Arts & Sciences Electronic Theses and Dissertations

Tumors cannot survive, progress and metastasize without recruiting new blood vessels. Vascular properties, including perfusion and permeability, provide valuable information for characterizing cancers and assessing therapeutic outcomes. Dynamic contrast-enhanced (DCE) MRI is a non-invasive imaging technique that affords quantitative parameters describing the underlying vascular structure of tissue. To date, the clinical application of DCE-MRI has been hampered by the lack of standardized and validated quantitative modeling approaches for data analysis.

From a therapeutic perspective, radiation therapy is a central component of the standard treatment for patients with cancer. Besides killing cancer cells, radiation also induces parenchymal and stromal changes in …


Mitochondrial Dynamics Controls T Cell Fate Through Metabolic Programming, Michael Buck May 2017

Mitochondrial Dynamics Controls T Cell Fate Through Metabolic Programming, Michael Buck

Arts & Sciences Electronic Theses and Dissertations

Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, …


Dox Inducible Idh2 R140q Expression In Stem Cells Results In Cell Death, Opposite Of Cancerous Overgrowth, Reuben Hogan May 2017

Dox Inducible Idh2 R140q Expression In Stem Cells Results In Cell Death, Opposite Of Cancerous Overgrowth, Reuben Hogan

Undergraduate Research Symposium Posters

Mutations in isocitrate dehydrogenase (IDH) 1 or 2 are found in about 23% of acute myeloid leukemia (AML) samples and about 90% of gliomas. Mutations result in neomorphic function of the IDH enzyme that yields the novel molecule 2-hydroxyglutarate (2HG) instead of alpha-ketoglutarate (aKG). 2HG is known to be associated with hypermethylation of DNA and histones, a phenotype seen in AML. Our lab intends to study the mechanism by which hypermethylation is achieved and how this mechanism relates to the onset of cancer. In this experiment, we utilized a line of H9 stem cells which we had developed. These cells …


The Human Arf Tumor Suppressor Regulates Drosha Nucleolar Localization And Rrna Processing Activity, Sree Chandana Sridhar Yaddanapudi Dec 2016

The Human Arf Tumor Suppressor Regulates Drosha Nucleolar Localization And Rrna Processing Activity, Sree Chandana Sridhar Yaddanapudi

Arts & Sciences Electronic Theses and Dissertations

Ribosomes are vital to the survival of a cell, as they are directly responsible for the synthesis of proteins, which perform critical cellular functions. As such, majority of the energy reserves in a proliferating cell are expended towards synthesis of ribosomes. Cancer cells, with their enhanced proliferation rates, tend to upregulate ribosome biogenesis in order to meet the demand for increased protein synthesis necessary to sustain rapid proliferation. Many of the oncogenes and tumor suppressors known to be deregulated in cancers are capable of positively and negatively regulating ribosome biogenesis, respectively. The ARF tumor suppressor strongly suppresses ribosome biogenesis, particularly …


State Space Analysis Of Dominant Structures In Dynamic Social Systems, Jeremy B. Sato Aug 2016

State Space Analysis Of Dominant Structures In Dynamic Social Systems, Jeremy B. Sato

McKelvey School of Engineering Theses & Dissertations

Many systems involving human relationships are modeled as dynamic systems, as diverse as urban population growth, diffusion of innovations, spread of viruses, and supply chain management. A fundamental assumption is that these systems contain variables which accumulate and deplete over time (people, innovation adoptions, infections, and orders), and whose dynamics are determined by societal rules and human decision making processes. These assumptions allow the system to be formally expressed by ordinary differential equations which are often nonlinear and contain multiple state variables and feedback loops. Analytical methods have been developed to identify the dominant feedback loops which primarily influence the …


Survival Analysis In A Clinical Setting, Yunzhao Liu Aug 2016

Survival Analysis In A Clinical Setting, Yunzhao Liu

Arts & Sciences Electronic Theses and Dissertations

With the fast paced advancement of modern medicine, cancer treatments have improved greatly over the past few decades; however, the overall survival rate has not improved for head neck squamous cell carcinoma (HNSCC). Traditionally, the general affected population of HNSCC was male over 50-60 years of age, whom have had history of alcohol and tobacco use. Conversely, in the recent decades, HNSCC has exhibited significant rise in younger patients, largely due to the increase in human papillomavirus (HPV) infection among young adults.

Generally, HPV as the most prevalent sexually transmitted disease, consisted of strains that do not cause harm to …


The P38mapk-Mk2-Hsp27 Axis Regulates The Mrna Stability Of The Pro-Tumorigenic Senescence-Associated Secretory Phenotype, Hayley Reynolds Moore Aug 2016

The P38mapk-Mk2-Hsp27 Axis Regulates The Mrna Stability Of The Pro-Tumorigenic Senescence-Associated Secretory Phenotype, Hayley Reynolds Moore

Arts & Sciences Electronic Theses and Dissertations

Protecting the genome is a vital aspect of safeguarding organismal health. Inability to efficiently and effectively replicate the genome or repair damage the genome may encounter can lead to mutational accumulation or senescence, both of which are drivers of multiple diseases including cancer. Understanding the mechanisms by which the genome is maintained, as well as the consequences of repeated rounds of replication or exposure to DNA damaging agents, will allow for greater understanding of the diseases they promote as well as development of targeted therapies aimed at mitigating the detrimental effects of genomic insult. The first section of my work …


The Role Of Dnmt3a In Acute Myeloid Leukemia Pathogenesis, Christopher Browning Cole May 2016

The Role Of Dnmt3a In Acute Myeloid Leukemia Pathogenesis, Christopher Browning Cole

Arts & Sciences Electronic Theses and Dissertations

Loss of function mutations in the DNA methyltransferase DNMT3A are highly recurrent in acute myeloid leukemia (AML). DNMT3A and the highly homologous gene DNMT3B encode the two methyltransferases that are primarily responsible for mediating de novo methylation of specific DNA sequences during cellular differentiation. DNMT3A mutations are mutually exclusive of several translocations that create oncogenic fusion genes (PML-RARA, RUNX1-RUNX1T1, CBFB-MYH11, and MLL-X), suggesting that these fusions may require functional DNMT3A to initiate leukemogenesis. Using bone marrow cells from a constitutive Dnmt3a null mouse, we show that loss of Dnmt3a caused a striking loss of DNA methylation throughout the genome of …


A Four-Dimensional Image Reconstruction Framework For Pet Under Arbitrary Geometries, Aswin John Mathews Dec 2014

A Four-Dimensional Image Reconstruction Framework For Pet Under Arbitrary Geometries, Aswin John Mathews

McKelvey School of Engineering Theses & Dissertations

Positron Emission Tomography (PET) is a functional imaging modality with applications ranging from the treatment of cancer, studying neurological diseases and disease models. Virtual-Pinhole PET technology improves the image quality in terms of resolution and contrast recovery. The technology calls for having a detector with smaller crystals placed near a region of interest in a conventional whole-body PET scanner. The improvement is from the higher spatial sampling of the imaging area near the detector. A prototype half-ring PET insert built to study head-and-neck cancer imaging was extended to breast cancer imaging. We have built a prototype half-ring PET insert for …


Real-Time Bioluminescence Imaging Of Salmonella-Neoplastic Cell Interactions, Kelly Flentie Jan 2011

Real-Time Bioluminescence Imaging Of Salmonella-Neoplastic Cell Interactions, Kelly Flentie

All Theses and Dissertations (ETDs)

Salmonella Typhimurium is a Gram-negative bacterial pathogen and a common cause of gastroenteritis in humans. The organism utilizes a multitude of well-studied virulence factors to invade and replicate in host intestinal epithelial cells and macrophages. Interestingly, Salmonella is also capable of localizing to tumors in in vivo model systems, and while the typical route of Salmonella infection and pathogenesis has been thoroughly investigated, the behavior of Salmonella in the tumor microenvironment has not. Therefore, to investigate Salmonella and host behavior during bacterial-neoplastic cell interactions, I utilized two high-throughput screens. In the first, I designed a bioluminescent transposon-reporter trap to identify …


P38 Phoshporylates Rb On Ser567 By A Novel, Cell Cycle-Independent Mechanism That Triggers Rb-Hdm2 Interaction And Apoptosis, Rachel Delston Jan 2010

P38 Phoshporylates Rb On Ser567 By A Novel, Cell Cycle-Independent Mechanism That Triggers Rb-Hdm2 Interaction And Apoptosis, Rachel Delston

All Theses and Dissertations (ETDs)

The retinoblastoma protein: Rb) inhibits both cell division and apoptosis, but the mechanism by which Rb alternatively regulates these divergent outcomes remains poorly understood. Cyclin dependent kinases: Cdks) promote cell division by phosphorylating and reversibly inactivating Rb by a hierarchical series of phosphorylation events and sequential conformational changes. The stress-regulated mitogen activated protein kinase: MAPK) p38 also phosphorylates Rb, but it does so in a cell cycle-independent manner that is associated with apoptosis rather than with cell division. Here, we show that p38 phosphorylates Rb by a novel mechanism that is distinct from that of Cdks. p38 bypasses the cell …


Local And Systemic Consequences Of Reducing Notch Signaling In Skin Keratinocytes, Shadmehr Demehri Jan 2010

Local And Systemic Consequences Of Reducing Notch Signaling In Skin Keratinocytes, Shadmehr Demehri

All Theses and Dissertations (ETDs)

Notch is a transmembrane receptor that mediates short-range signaling between neighboring cells. Notch signaling has been implicated in various cellular and developmental processes essential in the life of metazoans. Specifically, Notch signaling plays a critical role in mammalian skin. Removal of Notch alleles in skin keratinocytes has been associated with an array of phenotypes with varying severity based on the identity and number of remaining Notch receptors. Phenotypes include carcinogenesis: in the case of Notch1 loss), transformation of hair follicles to epidermal cysts and neonatal lethality, the latter seen in the absence of all Notch signaling. Although these phenotypes were …


Breaking Bad News: Effect Of Physician Communication On Analog Patients' Response, Emily Porensky Jan 2010

Breaking Bad News: Effect Of Physician Communication On Analog Patients' Response, Emily Porensky

All Theses and Dissertations (ETDs)

Breaking bad news is a difficult, yet unavoidable part of healthcare for physicians and patients alike. Although expert opinion suggests that certain strategies for breaking bad news may be better than others, there is little methodologically rigorous research to support current guidelines. This study used an experimental paradigm to test two communication strategies, forecasting bad news and framing prognostic information, when giving people a life-limiting diagnosis of colon cancer. Videotapes depicted a physician disclosing a diagnosis of cancer and discussing prognosis. Participants: N = 128) were asked to imagine they were going to see a doctor for physical symptoms they …