Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Identifying Smokestacks In Remotely Sensed Imagery Via Deep Learning Algorithms, Kenneth Moss Aug 2020

Identifying Smokestacks In Remotely Sensed Imagery Via Deep Learning Algorithms, Kenneth Moss

Masters Theses

Locating smokestacks in remote sensing imagery is a crucial first step to calculating smokestack heights, which allows for the accurate modeling of dioxin pollution spread and the study of resulting health impacts. In the interest of automating this process, this thesis examines deep learning networks and how changes in input datasets and network architecture affect image detection accuracy. This initial image detection serves as the first step in automated object recognition and height calculation. While this is applicable to general land use classification, this study specifically addresses detecting smokestack images. Different dataset scenarios are generated from the massive Functional Map …


Classification Of Bacterial Motility Using Machine Learning, Yue Ma Aug 2020

Classification Of Bacterial Motility Using Machine Learning, Yue Ma

Masters Theses

Cells can display a diverse set of motility behaviors, and these behaviors may reflect a cell’s functional state. Automated, and accurate cell motility analysis is essential to cell studies where the analysis of motility pattern is required. The results of such analysis can be used for diagnostic or curative decisions. Deep learning area has made astonishing progresses in the past several years. For computer vision tasks, different convolutional neural networks (CNN) and optimizers have been proposed to fix some problems. For time sequence data, recurrent neural networks (RNN) have been widely used.

This project leveraged on these recent advances to …


Improving Convolutional Neural Network Robustness To Adversarial Images Through Image Filtering, Natalie E. Bogda Aug 2020

Improving Convolutional Neural Network Robustness To Adversarial Images Through Image Filtering, Natalie E. Bogda

Masters Theses

The field of computer vision and deep learning is known for its ability to recognize images with extremely high accuracy. Convolutional neural networks exist that can correctly classify 96\% of 1.2 million images of complex scenes. However, with just a few carefully positioned imperceptible changes to the pixels of an input image, an otherwise accurate network will misclassify this almost identical image with high confidence. These perturbed images are known as \textit{adversarial examples} and expose that convolutional neural networks do not necessarily "see" the world in the way that humans do. This work focuses on increasing the robustness of classifiers …


A Neuroscience-Inspired Approach To Training Spiking Neural Networks, James Michael Ghawaly Jr. May 2020

A Neuroscience-Inspired Approach To Training Spiking Neural Networks, James Michael Ghawaly Jr.

Masters Theses

Spiking neural networks (SNNs) have recently gained a lot of attention for use in low-power neuromorphic and edge computing. On their own, SNNs are difficult to train, owing to their lack of a differentiable activation function and their inherent tendency towards chaotic behavior. This work takes a strictly neuroscience-inspired approach to designing and training SNNs. We demonstrate that the use of neuromodulated synaptic time dependent plasticity (STDP) can be used to create a variety of different learning paradigms including unsupervised learning, semi-supervised learning, and reinforcement learning. In order to tackle the highly dynamic and potentially chaotic spiking behavior of SNNs …