Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Entire DC Network

Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron Dec 2023

Generalized Differentiable Neural Architecture Search With Performance And Stability Improvements, Emily J. Herron

Doctoral Dissertations

This work introduces improvements to the stability and generalizability of Cyclic DARTS (CDARTS). CDARTS is a Differentiable Architecture Search (DARTS)-based approach to neural architecture search (NAS) that uses a cyclic feedback mechanism to train search and evaluation networks concurrently, thereby optimizing the search process by enforcing that the networks produce similar outputs. However, the dissimilarity between the loss functions used by the evaluation networks during the search and retraining phases results in a search-phase evaluation network, a sub-optimal proxy for the final evaluation network utilized during retraining. ICDARTS, a revised algorithm that reformulates the search phase loss functions to ensure …


Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa Dec 2023

Generative Adversarial Game With Tailored Quantum Feature Maps For Enhanced Classification, Anais Sandra Nguemto Guiawa

Doctoral Dissertations

In the burgeoning field of quantum machine learning, the fusion of quantum computing and machine learning methodologies has sparked immense interest, particularly with the emergence of noisy intermediate-scale quantum (NISQ) devices. These devices hold the promise of achieving quantum advantage, but they grapple with limitations like constrained qubit counts, limited connectivity, operational noise, and a restricted set of operations. These challenges necessitate a strategic and deliberate approach to crafting effective quantum machine learning algorithms.

This dissertation revolves around an exploration of these challenges, presenting innovative strategies that tailor quantum algorithms and processes to seamlessly integrate with commercial quantum platforms. A …


Anomaly Detection On Complex Health Information Technology Systems, Haoran Niu Aug 2023

Anomaly Detection On Complex Health Information Technology Systems, Haoran Niu

Doctoral Dissertations

While modern complex computer systems provide enormous benefits to our daily lives, the increasing complexity of these large-scale systems also makes them more susceptible to unexpected software malfunctions and malicious attacks. This is especially true for Health Information Technology (HIT), which has revolutionized healthcare delivery by making it more efficient, effective, and accessible. Nevertheless, the widespread adoption of HIT has introduced new challenges related to ensuring system reliability and security. As a result, the development of novel algorithms and frameworks to detect anomalies in such systems has become increasingly important for enhancing patient safety and improving the efficiency and effectiveness …


Computational Analysis Of Microbial Sequence Data Using Statistics And Machine Learning, Zhixiu Lu May 2023

Computational Analysis Of Microbial Sequence Data Using Statistics And Machine Learning, Zhixiu Lu

Doctoral Dissertations

Since the discovery of the double helix of DNA in 1953, modern molecular biology has opened the door to a better understanding of how genes control chemical processes within cells, including protein synthesis. Although we are still far from claiming a complete understanding, recent advances in sequencing technologies, increased computational capacity, and more sophisticated computational methods have allowed the development of various new applications that provide further insight into DNA sequence data and how the information they encode impacts living organisms and their environment. Sequencing data can now be used to start identifying the relationships between microorganisms, where they live, …


Enhancing The Performance Of The Mtcnn For The Classification Of Cancer Pathology Reports: From Data Annotation To Model Deployment, Kevin De Angeli Dec 2022

Enhancing The Performance Of The Mtcnn For The Classification Of Cancer Pathology Reports: From Data Annotation To Model Deployment, Kevin De Angeli

Doctoral Dissertations

Information contained in electronic health records (EHR) combined with the latest advances in machine learning (ML) have the potential to revolutionize the medical sciences. In particular, information contained in cancer pathology reports is essential to investigate cancer trends across the country. Unfortunately, large parts of information in EHRs are stored in the form of unstructured, free-text which limit their usability and research potential. To overcome this accessibility barrier, cancer registries depend on expert personnel who read, interpret, and extract relevant information. Naturally, as the number of stored pathology reports increases every day, depending on human experts presents scalability challenges. Recently, …


Transition Metal Computational Catalysis: Mechanistic Approaches And Development Of Novel Performance Metrics, Brett Anthony Smith Dec 2022

Transition Metal Computational Catalysis: Mechanistic Approaches And Development Of Novel Performance Metrics, Brett Anthony Smith

Doctoral Dissertations

Computational catalysis is an ever-growing field, thanks in part to the incredible progression of computational power and the efficiency offered by our current methodologies. Additionally, the accuracy of computation and the emergence of new methods that can decompose energetics and sterics into quantitative descriptors has allowed for researchers to begin to identify important structure-function relationships that predict the properties of unexplored subspaces within the overall chemical space. Catalytic descriptors have been used frequently in data driven high-throughput computational screenings. With the use of machine learning, a large portion of the chemical space an be predicted in matter of minutes or …


Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero Aug 2022

Better Understanding Genomic Architecture With The Use Of Applied Statistics And Explainable Artificial Intelligence, Jonathon C. Romero

Doctoral Dissertations

With the continuous improvements in biological data collection, new techniques are needed to better understand the complex relationships in genomic and other biological data sets. Explainable Artificial Intelligence (X-AI) techniques like Iterative Random Forest (iRF) excel at finding interactions within data, such as genomic epistasis. Here, the introduction of new methods to mine for these complex interactions is shown in a variety of scenarios. The application of iRF as a method for Genomic Wide Epistasis Studies shows that the method is robust in finding interacting sets of features in synthetic data, without requiring the exponentially increasing computation time of many …


Quantifying And Reversing Compensatory Movements By Persons Post-Stroke In The Ambient Setting, Aaron Miller Dec 2021

Quantifying And Reversing Compensatory Movements By Persons Post-Stroke In The Ambient Setting, Aaron Miller

Doctoral Dissertations

Nearly 800,000 people in the United States suffer stroke annually. Following the onset of stroke, survivors will exhibit deficits, such as hemiplegia, which will limit their function and ability to perform activities of daily living (ADLs). In order to regain independence, many stroke survivors will employ maladaptive compensatory strategies to help with the completion of tasks. Compensation is generally defined as any performance of a task that is different than the way it may have been performed before the onset of a neurodegenerative disorder. While for some severely impaired individuals, compensation may be necessary, for most these maladaptive strategies ultimately …


Small Molecule Activation By Transition Metal Complexes: Studies With Quantum Mechanical And Machine Learning Methodologies, Justin Kyle Kirkland May 2021

Small Molecule Activation By Transition Metal Complexes: Studies With Quantum Mechanical And Machine Learning Methodologies, Justin Kyle Kirkland

Doctoral Dissertations

One of the largest areas of study in the fields of chemistry and engineering is that of activation of small molecules such as nitrogen, oxygen and methane. Herein we study the activation of such molecules by transition metal compounds using quantum mechanical methods in order to understand the complex chemistry behind these processes. By understanding these processes, we can design and propose novel catalytic species, and through the use of data-driven machine learning methods, we are able to accelerate materials discovery.


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Analysis And Enhancement Of Human Cognitive Control Using Noninvasive Brain-Computer Interfaces, Soheil Borhani Dec 2020

Analysis And Enhancement Of Human Cognitive Control Using Noninvasive Brain-Computer Interfaces, Soheil Borhani

Doctoral Dissertations

Cognitive control including attention and working memory are crucial to human daily life. Whether a civilian who walks across a street or a military service member who is responsible for navigating a mission, cognitive control is involved, entirely. This ability is subject to impairment. People with attention disorder are easily disposed to distraction and lacks the ability to maintain the focus to a task. Multiple treatment strategies have been suggested which most of them has been pharmaceutical. Evidently, the medical treatment has side effects for long-term use. Moreover, it has a risk of drug misuse. Another line of treatment is …


Advanced Statistical Methods For Atomic-Level Quantification Of Multi-Component Alloys, Adam Spannaus May 2020

Advanced Statistical Methods For Atomic-Level Quantification Of Multi-Component Alloys, Adam Spannaus

Doctoral Dissertations

This thesis comprises a collection of papers whose common theme is data analysis of high entropy alloys. The experimental technique used to view these alloys at the nano-scale produces a dataset that, while comprised of approximately 10^7 atoms, is corrupted by observational noise and sparsity. Our goal is to developstatistical methods to quantify the atomic structure of these materials. Understanding the atomic structure of these materials involves three parts: 1. Determining the crystal structure of the material 2. Finding the optimal transformation onto a reference structure 3. Finding the optimal matching between structures and the lattice constantFrom identifying these elements, …


Applications Of Nonlinear Approximation For Problems In Learning Theory And Applied Mathematics, Joseph Douglas Daws Jr May 2020

Applications Of Nonlinear Approximation For Problems In Learning Theory And Applied Mathematics, Joseph Douglas Daws Jr

Doctoral Dissertations

A major pillar of approximation theory in establishing the ability of one class of functions to be represented by another. Establishing such a relationship often leads to efficient numerical approximation methods. In this work, several expressibility theorems are established and several novel numerical approximation techniques are also presented. Not only are these novel methods supported by the presented theory, but also, provided numerical experiments show that these novel methods may be applied to a wide range of applications from image compression to the solutions of high-dimensional PDE.


Reservoir Computing In An Evolutionary Neuromorphic Framework, John J. Reynolds Dec 2019

Reservoir Computing In An Evolutionary Neuromorphic Framework, John J. Reynolds

Doctoral Dissertations

Neuromorphic computing is an emerging hardware paradigm for doing non-traditional computing. It has advantages over typical von Neumann systems in a myriad of different situations. In particular, it offers attractive power savings over traditional hardware, by doing spiking neural network computations. However, programming a neuromorphic spiking system is very challenging, and thus an active field of research. This work explores using the TENNLab group's neuromorphic computing framework with reservoir computing, a method for utilizing either spiking or non-spiking neural networks as dynamical systems (called reservoirs) to filter and map information from one dimension to another to form useful intermediate data …


Essays In Network Theory Applications For Transportation Planning, Jeremy David Auerbach Aug 2018

Essays In Network Theory Applications For Transportation Planning, Jeremy David Auerbach

Doctoral Dissertations

Throughout the dissertation, network methods are developed to address pressing issues in transportation science and geography. These methods are applied to case studies to highlight their use for urban planners and social scientists working in transportation, mobility, housing, and health. The first chapter introduces novel network robustness measures for multi-line networks. This work will provide transportation planners a new tool for evaluating the resilience of transportation systems with multiple lines to failures. The second chapter explores optimizing network connectivity to maximize the number of nodes within a given distance to a focal node while minimizing the number and length of …


Data Analysis Methods Using Persistence Diagrams, Andrew Marchese Aug 2017

Data Analysis Methods Using Persistence Diagrams, Andrew Marchese

Doctoral Dissertations

In recent years, persistent homology techniques have been used to study data and dynamical systems. Using these techniques, information about the shape and geometry of the data and systems leads to important information regarding the periodicity, bistability, and chaos of the underlying systems. In this thesis, we study all aspects of the application of persistent homology to data analysis. In particular, we introduce a new distance on the space of persistence diagrams, and show that it is useful in detecting changes in geometry and topology, which is essential for the supervised learning problem. Moreover, we introduce a clustering framework directly …


Quantitative Metrics For Comparison Of Hyper-Dimensional Lsa Spaces For Semantic Differences, John Christopher Martin Aug 2016

Quantitative Metrics For Comparison Of Hyper-Dimensional Lsa Spaces For Semantic Differences, John Christopher Martin

Doctoral Dissertations

Latent Semantic Analysis (LSA) is a mathematically based machine learning technology that has demonstrated success in numerous applications in text analytics and natural language processing. The construction of a large hyper-dimensional space, a LSA space, is central to the functioning of this technique, serving to define the relationships between the information items being processed. This hyper-dimensional space serves as a semantic mapping system that represents learned meaning derived from the input content. The meaning represented in an LSA space, and therefore the mappings that are generated and the quality of the results obtained from using the space, is completely dependent …


Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich Dec 2015

Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich

Doctoral Dissertations

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space.

Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks. …


Computational Analysis Of Neutron Scattering Data, Benjamin Walter Martin Aug 2015

Computational Analysis Of Neutron Scattering Data, Benjamin Walter Martin

Doctoral Dissertations

This work explores potential methods for use in the detection and classification of defects within crystal structures via analysis of diffuse scattering data generated by single crystal neutron scattering experiments. The proposed defect detection methodology uses machine learning and image processing techniques to perform image texture analysis on neutron diffraction patterns generated by neutron scattering simulations. Once the methodology is presented, it is tested via a series of defect detection problems of increasing difficulty which utilize neutron scattering data simulated by a number of simulation techniques. As the problem difficulty is increased, the defect detection methodology is refined in order …


Automating Large-Scale Simulation Calibration To Real-World Sensor Data, Richard Everett Edwards May 2013

Automating Large-Scale Simulation Calibration To Real-World Sensor Data, Richard Everett Edwards

Doctoral Dissertations

Many key decisions and design policies are made using sophisticated computer simulations. However, these sophisticated computer simulations have several major problems. The two main issues are 1) gaps between the simulation model and the actual structure, and 2) limitations of the modeling engine's capabilities. This dissertation's goal is to address these simulation deficiencies by presenting a general automated process for tuning simulation inputs such that simulation output matches real world measured data. The automated process involves the following key components -- 1) Identify a model that accurately estimates the real world simulation calibration target from measured sensor data; 2) Identify …


Deep Machine Learning With Spatio-Temporal Inference, Thomas Paul Karnowski May 2012

Deep Machine Learning With Spatio-Temporal Inference, Thomas Paul Karnowski

Doctoral Dissertations

Deep Machine Learning (DML) refers to methods which utilize hierarchies of more than one or two layers of computational elements to achieve learning. DML may draw upon biomemetic models, or may be simply biologically-inspired. Regardless, these architectures seek to employ hierarchical processing as means of mimicking the ability of the human brain to process a myriad of sensory data and make meaningful decisions based on this data. In this dissertation we present a novel DML architecture which is biologically-inspired in that (1) all processing is performed hierarchically; (2) all processing units are identical; and (3) processing captures both spatial and …