Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

A Multi-Physics Model For Solid Oxide Iron-Air Redox Flow Battery: Simulation Of Discharge Behavior At High Current Density, Meng Guo, Xuan Zhao, Ralph E. White, Kevin Huang Aug 2013

A Multi-Physics Model For Solid Oxide Iron-Air Redox Flow Battery: Simulation Of Discharge Behavior At High Current Density, Meng Guo, Xuan Zhao, Ralph E. White, Kevin Huang

Faculty Publications

A rigorous physics-based mathematical model for a solid oxide iron-air redox flow battery system is presented in this paper. The modeled flow battery system combines a Fe-FeO redox couple as the energy storage unit and a regenerative solid oxide fuel cell as the electrical functioning unit in a 2D axial symmetric geometry. This model was developed from fundamental theories of reaction engineering in which basic transport phenomena and chemical/electrochemical kinetics are included. The model shows good agreement with the experimental data. Simulation results for the chemical, electrochemical and transport behavior of the battery are discussed.


Protein Structure Validation And Identification From Unassigned Residual Dipolar Coupling Data Using 2d-Pdpa, Arjang Fahim, Rishi Mukhopadhyay, Ryan Yandle, James H. Prestegard, Homayoun Valafar Aug 2013

Protein Structure Validation And Identification From Unassigned Residual Dipolar Coupling Data Using 2d-Pdpa, Arjang Fahim, Rishi Mukhopadhyay, Ryan Yandle, James H. Prestegard, Homayoun Valafar

Faculty Publications

More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 …


Protein Structure Validation And Identification From Unassigned Residual Dipolar Coupling Data Using 2d-Pdpa, Arjang Fahim, Rishi Mukhopadhayay, Ryan Yandle, James H. Prestegard, Homayoun Valafar Aug 2013

Protein Structure Validation And Identification From Unassigned Residual Dipolar Coupling Data Using 2d-Pdpa, Arjang Fahim, Rishi Mukhopadhayay, Ryan Yandle, James H. Prestegard, Homayoun Valafar

Faculty Publications

More than 90% of protein structures submitted to the PDB each year are homologous to some previously characterized protein structure. The extensive resources that are required for structural characterization of proteins can be justified for the 10% of the novel structures, but not for the remaining 90%. This report presents the 2D-PDPA method, which utilizes unassigned residual dipolar coupling in order to address the economics of structure determination of routine proteins by reducing the data acquisition and processing time. 2D-PDPA has been demonstrated to successfully identify the correct structure of an array of proteins that range from 46 to 445 …