Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Entire DC Network

Transverse Anderson Localization In Optical Fibers: High-Quality Wave Transmission And Novel Lasing Applications, Behnam Abaie Dec 2018

Transverse Anderson Localization In Optical Fibers: High-Quality Wave Transmission And Novel Lasing Applications, Behnam Abaie

Optical Science and Engineering ETDs

In this dissertation, transverse Anderson localization (TAL) of light mediated by disordered optical fibers is exploited for high-quality optical wave transmission and novel random lasing applications. En route, we first establish a powerful numerical platform for detailed investigation of TAL optical fibers (TALOF). Our approach is based on a modal perspective as opposed to beam propagation method (BPM) which was primarily used in the previous studies of TAL in disordered optical fibers. The versatile numerical tools developed in our simulations result in a potent methodology for simulation of TALOFs; the result is a fast and effective algorithm which can be …


Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten Dec 2018

Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten

Physics & Astronomy ETDs

In recent years, quantum information processors (QIPs) have grown from one or two qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they work, and how they fail – has become much more challenging. The obstacles to characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of qubits to hundreds, and enter what has been called the “noisy, intermediate-scale quantum” (NISQ) era. This thesis develops methods based on advanced statistics and machine learning algorithms to address the difficulties of “quantum character- ization, validation, and verification” (QCVV) of NISQ processors. In the …


Quantum Algorithms, Architecture, And Error Correction, Ciarán Ryan-Anderson Nov 2018

Quantum Algorithms, Architecture, And Error Correction, Ciarán Ryan-Anderson

Physics & Astronomy ETDs

Quantum algorithms have the potential to provide exponential speedups over some of the best known classical algorithms. These speedups may enable quantum devices to solve currently intractable problems such as those in the fields of optimization, material science, chemistry, and biology. Thus, the realization of large-scale, reliable quantum-computers will likely have a significant impact on the world. For this reason, the focus of this dissertation is on the development of quantum-computing applications and robust, scalable quantum-architectures. I begin by presenting an overview of the language of quantum computation. I then, in joint work with Ojas Parekh, analyze the performance of …


How Hilbert’S Attempt To Unify Gravitation And Electromagnetism Failed Completely, And A Plausible Resolution, Victor Christianto, Florentin Smarandache, Robert N. Boyd Nov 2018

How Hilbert’S Attempt To Unify Gravitation And Electromagnetism Failed Completely, And A Plausible Resolution, Victor Christianto, Florentin Smarandache, Robert N. Boyd

Branch Mathematics and Statistics Faculty and Staff Publications

In the present paper, these authors argue on actual reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed completely. An outline of plausible resolution of this problem is given here, based on: a) Gödel’s incompleteness theorem, b) Newton’s aether stream model. And in another paper we will present our calculation of receding Moon from Earth based on such a matter creation hypothesis. More experiments and observations are called to verify this new hypothesis, albeit it is inspired from Newton’s theory himself.


Plasmon-Enhanced Quadrupolar Transitions With Nanostructured Graphene, Stephen Sanders Nov 2018

Plasmon-Enhanced Quadrupolar Transitions With Nanostructured Graphene, Stephen Sanders

Shared Knowledge Conference

Many important molecules have quadrupolar excitations which occur at much slower rates than the competing dipolar transitions and hence are termed forbidden. In this work, we propose a new approach to enhance quadrupolar transitions using graphene nanostructures. We provide a detailed investigation of the enhanced transition rate in the vicinity of graphene nanoislands and use rigorous computational methods to analyze how this quantity changes with the geometrical and material parameters of the nanoisland. To support these calculations we also provide a semi-analytic approach. Finally, we investigate the performance of arrays of graphene nanoribbons, which constitutes a suitable platform for the …


Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado Nov 2018

Genetic Algorithm Design Of Photonic Crystals For Energy-Efficient Ultrafast Laser Transmitters, Troy A. Hutchins-Delgado

Shared Knowledge Conference

Photonic crystals allow light to be controlled and manipulated such that novel photonic devices can be created. We are interested in using photonic crystals to increase the energy efficiency of our semiconductor whistle-geometry ring lasers. A photonic crystal will enable us to reduce the ring size, while maintaining confinement, thereby reducing its operating power. Photonic crystals can also exhibit slow light that will increase the interaction with the material. This will increase the gain, and therefore, lower the threshold for lasing to occur. Designing a photonic crystal for a particular application can be a challenge due to its number of …


Nonthermal Dark Matter From Early Matter Domination, Jacek Ksawery Osinski Nov 2018

Nonthermal Dark Matter From Early Matter Domination, Jacek Ksawery Osinski

Shared Knowledge Conference

Dark matter (DM) production in the early universe traditionally assumes a standard thermal history where the universe is in a radiation-dominated phase after the end of inflation until matter-radiation equality. However, the presence of additional scalar fields (which is a generic prediction of explicit string constructions) can lead to an epoch of early matter domination (EMD) that ends before the onset of big bang nucleosynthesis. Such an EMD phase has important cosmological consequences and renders thermal production of DM irrelevant. We present three scenarios for DM production involving an era of EMD: evaporation of primordial black holes into DM, DM …


Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke Nov 2018

Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke

Shared Knowledge Conference

Many experiments have shown that the diffusive motion of lipids and membrane proteins are slower on the cell surface than those in artificial lipid bilayers or blebs. One hypothesis that may partially explain this mystery is the effect of the cytoskeleton structures on the protein dynamics. A model proposed by Kusumi [1] is the Fence-Picket Model which describes the cell membrane as a set of compartment regions, each ~ 10 to 200 nm in size, created by direct or indirect interaction of lipids and proteins with actin filaments just below the membrane. To test this hypothesis, we have assembled a …


Sampling Complexity Of Bosonic Random Walkers On A One-Dimensional Lattice, Gopikrishnan Muraleedharan, Akimasa Miyake, Ivan Deutsch Nov 2018

Sampling Complexity Of Bosonic Random Walkers On A One-Dimensional Lattice, Gopikrishnan Muraleedharan, Akimasa Miyake, Ivan Deutsch

Shared Knowledge Conference

Computers based quantum logic are believed to solve problems faster and more efficiently than computers based on classical boolean logic. However, a large-scale universal quantum computer with error correction may not be realized in near future. But we can ask the question: can we devise a specific problem that a quantum device can solve faster than current state of the art super computers? One such problem is the so called "Boson Sampling" problem introduced by Aaronson and Arkhipov. The problem is to generate random numbers according to same distribution as the output number configurations of photons in linear optics. It …


Charge Transfer Plasmon Resonances In Metallic Nanorod-Film Systems, Paul J. Gieri Nov 2018

Charge Transfer Plasmon Resonances In Metallic Nanorod-Film Systems, Paul J. Gieri

Shared Knowledge Conference

Understanding how the plasmonic response of colloidally grown metallic nanostructures changes when coupled to a metallic film is an important research problem with significant consequences for a number of applications such as sensing, solar energy harvesting, spectroscopy, and photochemistry, to name a few. In this work we investigate, both through experimental and theoretical approaches, the optical response of ligand coated gold nanorods and their interaction with gold films. We find that the scattering response of these systems is dominated by a charge transfer plasmon, in which charge flows between the particle and film. Additionally, we show that the characteristics of …


Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani Nov 2018

Pulsed Fiber Optics Lasers As Highly Sensitive Sensors, Hanieh Afkhamiardakani

Shared Knowledge Conference

An interferometer or resonator is a device in which optical beams of specific frequencies circulate with minimal losses. These losses are completely compensated by the gain inside a laser resonator. A small perturbation introduced inside the laser can affect its frequency, which in turns becomes a metric of that perturbation. The perturbation is usually caused by an electric or magnetic field, rotation, acceleration, nonlinear index of refraction etc. Tiny changes of optical frequency are monitored by superimposing the laser field and a reference field (from the same laser) on a detector. This technique requires creating a laser in which two …


Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti Nov 2018

Cementitious Sensors Exhibiting Stopbands In Acoustic Transmission Spectra, Shreya Vemuganti

Shared Knowledge Conference

Ultrasonic monitoring in cementitious materials is challenging due to the high degree of attenuation. In wellbore environments, monitoring becomes more challenging due to inaccessibility. Meta materials, also known as acoustic bandgap materials, exhibit an interesting feature of forbidding the propagation of elastic/sound waves and isolate vibration in a certain frequency band. Traditionally, acoustic bandgap materials are developed with inclusions such as tin, aluminum, gold, steel in a polymer matrix. In this study, we present the development of three-dimensional cementitious sensors capable of exhibiting stopbands in the acoustic transmission spectra using carbon nanotubes. Relatively wide stopbands were engineered using Floquet-Bloch periodic …


Two Applications Of High Order Methods: Wave Propagation And Accelerator Physics, Oleksii Beznosov Nov 2018

Two Applications Of High Order Methods: Wave Propagation And Accelerator Physics, Oleksii Beznosov

Shared Knowledge Conference

Numerical simulations of partial differential equations (PDE) are used to predict the behavior of complex physics phenomena when the real life experiments are expensive. Discretization of a PDE is the representation of the continuous problem as a discrete problem that can be solved on a computer. The discretization always introduces a certain inaccuracy caused by the numerical approximation. By increasing the computational cost of the numerical algorithm the solution can be computed more accurately. In the theory of numerical analysis this fact is called the convergence of the numerical algorithm. The idea behind high order methods is to improve the …


A Few Surprises About Non-Locality Interactions, Precognitive Interdiction, And The Spirit From Physics Viewpoint, Victor Christianto, Florentin Smarandache Oct 2018

A Few Surprises About Non-Locality Interactions, Precognitive Interdiction, And The Spirit From Physics Viewpoint, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

There are various supernatural phenomena which hardly can be explained by the existing electromagnetic science, for instance non-locality interactions (may be associated with ESP etc), and also precognitive interdictions. And there are other problems such as how to include the Spirit in our consciousness. For example, it has been known for long time that intuition plays significant role in many professions and human life, including in entrepreneurship, government, and also in detective or law enforcement activities. Despite these examples, such a precognitive interdiction is hardly accepted in established science. In this paper, we discuss non-locality interactions and also advanced solutions …


Quiet Drive Electronics For Pulse-Tube Refrigerator Rotary Valves, Stephen T. Boyd, Ruslan A. Hummatov, Stephan Friedrich Oct 2018

Quiet Drive Electronics For Pulse-Tube Refrigerator Rotary Valves, Stephen T. Boyd, Ruslan A. Hummatov, Stephan Friedrich

Physics & Astronomy Faculty and Staff Publications

Recent measurements made with magnetic microcalorimeter (MMC) particle detectors at UNM demonstrated a pronounced sensitivity to noise induced by the rotary valve drive electronics of our Cryomech PT405 pulse-tube refrigerator. After consultation with Cryomech, we undertook to develop a new drive electronics that is fullydifferential, well-grounded, and fully linear, with no digital components all the way out to the wall socket. The design goal was to develop a drive electronics that could potentially be used inside an RF-shielded room for the most sensitive SQUID-based measurements. In this report we describe the circuit design and highly successful test results showing that …


Beryllium And Indium Activation Measurements Of Total Neutron Yield From A Pulsed Photoneutron Source, Kristina K. Brown Sep 2018

Beryllium And Indium Activation Measurements Of Total Neutron Yield From A Pulsed Photoneutron Source, Kristina K. Brown

Physics & Astronomy ETDs

A pulsed photoneutron source consisting of a beryllium sphere and a 5 MeV endpoint 30 ns bremsstrahlung beam emanating from the Mercury pulsed-power source was assembled and tested in October 2017 at the Naval Research Laboratory (NRL) in Washington, D.C. [1]. The objective of this experiment was to verify the feasibility of using a pulsed power source to create a large number of photoneutrons in a short period of time, leveraging the low photoneutron production threshold of 9Be to maximize neutron production. Several diagnostics were deployed to characterize the source and target, including indium and beryllium activation detectors that measured …


Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross Jul 2018

Weak Measurements For Quantum Characterization And Control, Jonathan A. Gross

Physics & Astronomy ETDs

This dissertation concerns itself with the virtues and vices of weak measurements. Weak measurements are all around us, but this does not mean that one should manufacture weakness on all occasions. We critically evaluate two proposals that claim weak measurements provide a novel means of performing quantum state tomography, allegedly increasing tomographic efficacy and yielding foundational insights into the nature of quantum mechanics. We find weak measurements are not an essential ingredient for most of their advertised features. In contrast to this negative finding, we highlight an optimal tomographic scheme for which weak continuous measurements are the best known implementation, …


Localization And Scrambling Of Quantum Information With Applications To Quantum Computation And Thermodynamics, Adrian Kristian Chapman Jul 2018

Localization And Scrambling Of Quantum Information With Applications To Quantum Computation And Thermodynamics, Adrian Kristian Chapman

Physics & Astronomy ETDs

As our demand for computational power grows, we encounter the question: "What are the physical limits to computation?" An answer is necessarily incomplete unless it can incorporate physics at the smallest scales, where we expect our near-term high-performance computing to occur. Microscopic physics -- namely, quantum mechanics -- behaves counterintuitively to our everyday experience, however. Quantum matter can occupy superpositions of states and build stronger correlations than are possible classically. This affects how quantum computers and quantum thermodynamic engines will behave.

Though these properties may seem to overwhelmingly defeat our attempts to build a quantum computer at-first-glance, what is remarkable …


Radon Measurement For Neutrinoless Double Beta Decay, Xavier Carlos Quintana Jul 2018

Radon Measurement For Neutrinoless Double Beta Decay, Xavier Carlos Quintana

Physics & Astronomy ETDs

This thesis details the design and operation of a high-sensitivity radon detector for use in background radiation characterization and mitigation for the MAJORANA DEMONSTRATOR Neutrinoless Double Beta Decay Experiment and Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND) Collaboration. Understanding and mitigating background radiation is especially important in searches for very rare nuclear processes, which utilize sensitive detectors. One such rare process is the yet-to-be-observed neutrinoless double beta decay. Observation of this process would imply that the neutrino is its own antiparticle, called a Majorana particle, violate lepton number, and provide experimental constraints on the masses and mixing …


Novel Compact Narrow-Linewidth Mid-Infrared Lasers For Sensing Applications, Behsan Behzadi Jul 2018

Novel Compact Narrow-Linewidth Mid-Infrared Lasers For Sensing Applications, Behsan Behzadi

Optical Science and Engineering ETDs

The mid-infrared (2-14 μm) spectral region contains the strong absorption lines of many important molecular species, which make this region crucial for several well-know applications such as spectroscopy, chemical and biochemical sensing, security, and industrial monitoring. To fully exploit this region through absorption spectroscopic techniques, compact and low-cost narrow-linewidth (NLW) mid-infrared (MIR) laser sources are of primary importance.

This thesis is focused on three novel compact NLW MIR lasers: demonstration and characterization of a new glass-based spherical microlaser, investigation of the performance of a novel fiber laser, and the design of a monolithic laser on a silicon chip. Starting with …


Neutrino Flavor Conversions In Dense Media, Lei Ma Jun 2018

Neutrino Flavor Conversions In Dense Media, Lei Ma

Physics & Astronomy ETDs

Neutrinos are abundantly produced in astrophysical environments such as core-collapse supernovae and binary neutron star mergers. Neutrino flavor conversions in the dense media play important roles in the physical and chemical evolutions of the environments. In this dissertation, I study two mechanisms through which neutrinos may change their flavors.

In the first mechanism, neutrinos can experience flavor conversions through interactions with oscillatory perturbations in matter distributions. I show that this mechanism can be understood intuitively as Rabi oscillations. I also derive criteria which can be used to determine whether such parametric resonances exist in a given environment.

In the second …


On Maxwell-Dirac Isomorphism, Florentin Smarandache, Victor Christianto Jun 2018

On Maxwell-Dirac Isomorphism, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le May 2018

Development Of Metallic Magnetic Calorimeters And Paramagnetic Alloys Of Ag And Er For Gamma-Ray Spectroscopy, Linh N. Le

Physics & Astronomy ETDs

A Metallic Magnetic Calorimeter (MMC) is a cryogenic calorimetric particle detector that employs a metallic paramagnetic alloy as the temperature sensor material. MMCs are used in many different applications, but this work will focus on their uses in high energy resolution gamma-ray spectroscopy. This technology is of great interest to the field of Nuclear Forensics and Nuclear Safeguards as a non-destructive assay for isotopic analysis of nuclear samples. The energy resolution of MMCs is an order of magnitude higher than the benchmark High Purity Germanium (HPGe) detectors that are currently used in the field and MMCs are also poised to …


High-Throughput Automated Multi-Target Super-Resolution Imaging, Farzin Farzam May 2018

High-Throughput Automated Multi-Target Super-Resolution Imaging, Farzin Farzam

Physics & Astronomy ETDs

Super-resolution microscopy techniques developed through the past few decades enable us to surpass the classical diffraction limit of light, and thus open new doors to investigate the formerly inaccessible world of nanometer-sized objects. Most importantly, by using super-resolution microscopy, one can visualize sub-cellular structures in the range of 10 to 200 nm. At this range, we can investigate exciting problems in biology and medicine by visualizing protein-protein interactions and spatiotemporal analysis of structures of interest on the surface or inside cells. These techniques (collectively known as nanoscopy) have a high impact on understanding and solving biological questions. This dissertation starts …


Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides May 2018

Vibrational Relaxation Theory For Systems Embedded In Microscopically Specified Reservoirs, Anastasia Aemilia Ierides

Physics & Astronomy ETDs

This dissertation is a study of the theoretical framework of the practical as well as fundamental problem of the process of relaxation to equilibrium of quantum mechanical systems. The fundamental aspect is concerned with the simultaneous occurrence of decoherence and population equilibration. The practical aspect deals with experimental observations of vibrational relaxation of molecules embedded in liquids or solids. The systems include, but are not limited to, the nondegenerate dimer and harmonic oscillator, in one case weak and in the other strong, interaction with a thermal bath. The time dependence of the energy and the temperature dependence of the relaxation …


Dispersive Quantum Interface With Atoms And Nanophotonic Waveguides, Xiaodong Qi May 2018

Dispersive Quantum Interface With Atoms And Nanophotonic Waveguides, Xiaodong Qi

Physics & Astronomy ETDs

Strong coupling between atoms and light is critical for quantum information processing and precise sensing. A nanophotonic waveguide is a promising platform for realizing an atom-light interface that reaches the strong coupling regime. In this dissertation, we study the dispersive response theory of the nanowaveguide system as the means to create an entangling atom-light interface, with applications to quantum non-demolition (QND) measurement and spin squeezing.

We calculate the dyadic Green's function, which determines the scattering of light by atoms in the presence of a nanowaveguide, and thus the phase shift and polarization rotation induced on the guided light. The Green's …


Novel Nonlinear And Quantum Devices Based On Multimode Optical Fibers, Hamed Pourbeyram May 2018

Novel Nonlinear And Quantum Devices Based On Multimode Optical Fibers, Hamed Pourbeyram

Physics & Astronomy ETDs

In this dissertation, multimode optical fibers (MMFs) have been studied as a robust and practical platform for nonlinear optics and quantum optics applications, where by experimental investigations and theoretical calculations we present the quantum and nonlinear virtue of MMFs as a versatile tool for future applications. Our investigations can be summarized in three parts: At first, we have investigated stimulated Raman scattering (SRS) in a long MMF, where more than 20 orders of cascaded Raman peaks have been generated. Observation of beam clean-up despite the highly multimode nature of the fiber and such strong nonlinear interaction despite the large fiber …


Infrared Properties Of Stars In The Bulge Asymmetries And Dynamical Evolution Survey, Eddie Hilburn Apr 2018

Infrared Properties Of Stars In The Bulge Asymmetries And Dynamical Evolution Survey, Eddie Hilburn

Physics & Astronomy ETDs

The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey is an SiO maser survey of 28,062 infrared-selected evolved stars primarily in the Galactic plane. By cross-matching the BAaDE target sources with nine different infrared catalogs, we have constructed a catalog with wavelength coverage from 0.71 to 80 m. Using this catalog, we fit the data for each source to a model spectral energy distribution (SED) generated with the radiation transport program DUSTY in order to obtain characteristics such as bolometric flux, source effective temperature, and the optical depth of the circumstellar envelope.

The overall goal of the BAaDE survey is to …


Quantum Phase Space Representations And Their Negativities, Ninnat Dangniam Apr 2018

Quantum Phase Space Representations And Their Negativities, Ninnat Dangniam

Physics & Astronomy ETDs

A classical simulation scheme of quantum computation given a restricted set of states and measurements may be---occasionally, but only occasionally---interpreted naturally as a statistical simulation of positive quasi-probability distributions on a phase space. In this dissertation, we explore phase space representations for finite-dimensional quantum systems and their negativities beyond the usual analogues of the Wigner function.

The first line of study focuses on a characterization tool for valid quasi-probability distributions of (possibly mixed) quantum states. A quantum generalization of Bochner's theorem from classical probability theory simultaneously characterizes both the set of valid Wigner functions and the subset of positive ones. …


An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter Apr 2018

An Exploration Of The Optical Detection Of Ionizing Radiation Utilizing Modern Optics Technology, Sean D. Fournier, Adam Hecht, Cassiano De Oliveira, Jeffrey B. Martin, Richard K. Harrison, Charles Potter

Nuclear Engineering ETDs

Modern ultraviolet (UV) cameras, when combined with UV-transmitting lenses/filter arrangements, can be used to detect radiation dose in air. Ionizing radiation excites nitrogen molecules in ambient air, the resulting decay includes weak emission of ultraviolet photons. Previous work has proven this phenomenon is detectable using highly-sensitive electronically cooled cameras traditionally used in astronomy for low-background imaging. While the ability to detect the presence of radiation (i.e. qualitative measurement) has been demonstrated at Sandia National Laboratories, there are several challenges in correlating images to known dose-fields (quantitative measurement). These challenges include: a low signal to background ratio, interferences due to electronic …