Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Ecosystem-Scale Biogeochemical Fluxes From Three Bioenergy Crop Candidates: How Energy Sorghum Compares To Maize And Miscanthus, Caitlin E. Moore, Adam C. Von Haden, Mark B. Burnham, Ilsa B. Kantola, Christy D. Gibson, Bethany J. Blakely, Evan C. Dracup, Michael D. Masters, Wendy H. Yang, Evan H. Delucia, Carl J. Bernacchi Mar 2021

Ecosystem-Scale Biogeochemical Fluxes From Three Bioenergy Crop Candidates: How Energy Sorghum Compares To Maize And Miscanthus, Caitlin E. Moore, Adam C. Von Haden, Mark B. Burnham, Ilsa B. Kantola, Christy D. Gibson, Bethany J. Blakely, Evan C. Dracup, Michael D. Masters, Wendy H. Yang, Evan H. Delucia, Carl J. Bernacchi

United States Department of Agriculture-Agricultural Research Service / University of Nebraska-Lincoln: Faculty Publications

Perennial crops have been the focus of bioenergy research and development for their sustainability benefits associated with high soil carbon (C) and reduced nitrogen (N) requirements. However, perennial crops mature over several years and their sustainability benefits can be negated through land reversion. A photoperiod-sensitive energy sorghum (Sorghum bicolor) may provide an annual crop alternative more ecologically sustainable than maize (Zea mays) that can more easily integrate into crop rotations than perennials, such as miscanthus (Miscanthus × giganteus). This study presents an ecosystem-scale comparison of C, N, water and energy fluxes from energy sorghum, maize and miscanthus during a typical …


Biofuels From Crop Residue Can Reduce Soil Carbon And Increase Co2 Emissions, Adam J. Liska, Haishun Yang, Maribeth Milner, Steve Goddard, Humberto Blanco-Canqui, Matthew P. Pelton, Xiao X. Fang, Haitao Zhu, Andrew E. Suyker Apr 2014

Biofuels From Crop Residue Can Reduce Soil Carbon And Increase Co2 Emissions, Adam J. Liska, Haishun Yang, Maribeth Milner, Steve Goddard, Humberto Blanco-Canqui, Matthew P. Pelton, Xiao X. Fang, Haitao Zhu, Andrew E. Suyker

Adam Liska Papers

Removal of corn residue for biofuels can decrease soil organic carbon(SOC) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, …


Litter-Carbon Dynamics: The Importance Of Decomposition, Accretion, And Sequestration In Understanding Ecosystem Carbon Cycling, Amy Kochsiek Jan 2010

Litter-Carbon Dynamics: The Importance Of Decomposition, Accretion, And Sequestration In Understanding Ecosystem Carbon Cycling, Amy Kochsiek

School of Biological Sciences: Dissertations, Theses, and Student Research

The atmospheric CO2 concentration has been increasing since the industrial revolution. A proposed mitigation strategy is sequestering carbon (C) in terrestrial ecosystems, either in plant biomass or soil organic matter. The litter-C pool is the second largest C pool in agroecosystems post-harvest, and the amount of litter-C loss has been correlated with ecosystem respiration. Yet, the potential importance of the litter pool as one of the major C pools in a system is relatively unknown. We do, however, know that the size of the litter pool can be affected by increases or decreases in both litter-C production and decomposition, …