Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Supramolecular Nanoassemblies For The Separation And Mass Spectrometric Analysis Of Peptides And Modified Proteins, Meizhe Wang Oct 2019

Supramolecular Nanoassemblies For The Separation And Mass Spectrometric Analysis Of Peptides And Modified Proteins, Meizhe Wang

Doctoral Dissertations

Protein post-translational modifications (PTMs) play key roles in cellular physiology and disease, and identifying their locations on proteins can be beneficial for understanding more deeply protein chemistry. The methods applied for PTM analysis are most often based on mass spectrometry (MS). In the past few years, considerable progress has been made in developing MS-based proteomics technologies for global PTM analysis. Novel mass spectrometric peptide sequencing and analysis technologies allow for modification site mapping at molecular level. However, detecting PTMs on proteins and peptides by MS is challenging because of their low abundance and heterogeneity. Therefore, separation prior to MS analysis …


Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao Oct 2019

Protein Detection And Structural Characterization By Mass Spectrometry Using Supramolecular Assemblies And Small Molecules, Bo Zhao

Doctoral Dissertations

Mass spectrometry (MS) has played an increasingly prominent role in proteomics and structure biology because it shows superior capabilities in identification, quantification and structural characterization of proteins. To realize its full potential in protein analysis, significant progress has been made in developing innovative techniques and reagents that can couple to MS detection. This dissertation demonstrates the use of polymeric supramolecular assemblies for enhanced protein detection in complex biological mixtures by MS. An amphiphilic random co-polymer scaffold is developed to form functional supramolecular assemblies for protein/ peptide enrichment. The influences of charge density and functional group pKa on host-guest interactions …


Ni Site Structure And Function In Biological Sensing And Enzyme Activity, Hsin-Ting Huang Jul 2019

Ni Site Structure And Function In Biological Sensing And Enzyme Activity, Hsin-Ting Huang

Doctoral Dissertations

Ni(II) is one of the important cofactors involved in various enzyme functions. For organisms utilizing Ni(II), a regulation system is required to maintain Ni(II) homeostasis and prevent toxicity. The focus of this dissertation is on investigating the relationship between the Ni(II) site structure and the function of proteins, a Ni(II) sensor and a Ni(II) enzyme. RcnR, a Ni(II)/Co(II) sensor in E. coli, controls the expression of the Ni(II)/Co(II) exporter proteins, RcnAB. Due to the lack of structural information, the mechanism of metal induced allosteric regulation and metal selection is not fully elucidated. Results presented here show that binding of …


Enhanced Mass Spectrometric Analysis Of Peptides And Proteins Using Polymeric Reverse Micelles, Mahalia Adelina Corazon Paningbatan Serrano Mar 2019

Enhanced Mass Spectrometric Analysis Of Peptides And Proteins Using Polymeric Reverse Micelles, Mahalia Adelina Corazon Paningbatan Serrano

Doctoral Dissertations

Mass spectrometry (MS) has become a key and indispensable tool in the identification, characterization, and quantitative analysis of proteins owing to its universality, sensitivity, specificity, and its capability for multiplexed detection. Because biological samples containing these protein analytes are almost always complex systems, various techniques are employed in conjunction with MS to fully harness its analytical potential and enhance its detection capabilities. This dissertation explores the use of amphiphilic polymeric reverse micelles in enriching proteins and peptides from complex biological mixtures and in enhancing their mass spectrometric analysis. Fundamental studies that elucidate the molecular basis for the observed MS signal …