Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Theses and Dissertations--Molecular and Cellular Biochemistry

Theses/Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 62

Full-Text Articles in Entire DC Network

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson Jan 2023

Characterization Of The Function And Regulation Of The Hmpv Phosphoprotein, Rachel Thompson

Theses and Dissertations--Molecular and Cellular Biochemistry

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus (NNSV) that frequently causes respiratory tract infections in infants, the elderly, and the immunocompromised. Despite the initial identification of HMPV in 2001, there are currently no FDA approved antivirals or vaccines available. Therefore, understanding the mechanism of HMPV replication is critical for the identification of novel therapeutic targets. A key feature in the replication cycle of HMPV and other NNSVs is the formation of membrane-less, liquid-like replication and transcription centers in the cytosol termed inclusion bodies (IBs). Recent work on NNSV IBs suggests they display characteristics of biomolecular condensates formed …


Protein S In Coagulation And Inflammation, Martha Mega Silvia Sim Jan 2023

Protein S In Coagulation And Inflammation, Martha Mega Silvia Sim

Theses and Dissertations--Molecular and Cellular Biochemistry

Protein S (PS) is a key regulator, which links inflammation and coagulation and performs multiple proposed functions in both processes. PS exists in the blood as a free soluble form (~40%), bound to complement component 4b-binding protein/ C4BP (~60%), and packaged in platelet α-granules (~2.5%). Subendothelial tissue factor (TF), upon exposure to blood, initiates coagulation, a proteolytic cascade which results in the activation of thrombin, the enzyme responsible for formation of a fibrin clot. PS is a critical anticoagulant that inhibits multiple steps of this process. Only the free fraction of PS has full anticoagulant properties, as C4BP blocks this …


The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith Jan 2023

The Development And Characterization Of Nanobodies Specific To Protein Tyrosine Phosphatase 4a3 (Ptp4a3/Prl-3) To Dissect And Target Its Role In Cancer., Caroline Smith

Theses and Dissertations--Molecular and Cellular Biochemistry

Protein Tyrosine Phosphatase 4A3 (PTP4A3 or PRL-3) is an oncogenic dual-specificity phosphatase that drives tumor metastasis, promotes cancer cell survival, and is correlated with poor patient prognosis in a variety of solid tumors and leukemias. The mechanisms that drive PRL-3’s oncogenic functions are not well understood, in part due to a lack of research tools available to study this protein. The development of such tools has proven difficult, as the PRL family is ~80% homologous and the PRL catalytic binding pocket is shallow and hydrophobic. Currently available small molecules do not exhibit binding specificity for PRL-3 over PRL family members, …


A Characterization Of Key Residues In Class I Viral Fusion Proteins Important For Fusogenic Activity, Hadley E. Neal Jan 2023

A Characterization Of Key Residues In Class I Viral Fusion Proteins Important For Fusogenic Activity, Hadley E. Neal

Theses and Dissertations--Molecular and Cellular Biochemistry

Viral fusion proteins are critical for viral entry and subsequent infection. Class I fusion proteins are characterized by synthesis as an inactive precursor requiring cleavage by a host cell protease to become fusion competent. Though vaccine and antiviral therapeutic developments often target the fusion protein, questions surrounding cleavage dynamics and protein stability remain. The work presented in this dissertation investigates specific regions of three class I viral fusion proteins in an effort to identify key residues involved in proteolytic processing and membrane fusion.

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) mediates receptor binding, facilitates fusion …


Defining Patient Cohorts For Guiding Clinical Trials And Treatment In Lafora Disease: A Model For The Rare Disease Community, Katherine Janae Donohue Jan 2022

Defining Patient Cohorts For Guiding Clinical Trials And Treatment In Lafora Disease: A Model For The Rare Disease Community, Katherine Janae Donohue

Theses and Dissertations--Molecular and Cellular Biochemistry

In the US, approximately 8000 rare diseases have been identified. Combined, rare diseases impact more than 30 million people in the U.S. alone, with 75% of those being children. However, research, funding, and therapeutic development for the rare disease community remains challenging because of the incredible diversity – not only between diseases, but often even within a single disease.

LD is an ultra-rare childhood dementia and epilepsy caused by mutations in one of two driver genes: EPM2A, which encodes for the glycogen phosphatase laforin, and EPM2B/NHLRC1, which encodes the E3 ubiquitin ligase malin. Children with LD …


A Multidisciplinary Characterization Of The Enzymology And Biology Of Reversible Glucan Phosphorylation In Toxoplasma Gondii , Robert Murphy Jan 2022

A Multidisciplinary Characterization Of The Enzymology And Biology Of Reversible Glucan Phosphorylation In Toxoplasma Gondii , Robert Murphy

Theses and Dissertations--Molecular and Cellular Biochemistry

Toxoplasma gondii is an opportunistic, protozoan parasite of all warm-blooded animals, infecting roughly one-third of humans worldwide. Humans acquire infections by consuming T. gondii tissue cysts in undercooked meat or from oocysts shed in cat feces. Encysted parasites convert into rapidly growing tachyzoites that disseminate throughout the body, defining the acute phase of infection. Under host immune pressure, tachyzoites convert into bradyzoites that populate tissue cysts found in CNS or muscle tissue and persist for the lifetime of the host, defining the chronic phase of infection. Tissue cysts are responsible for transmission via carnivory, but also possess the ability to …


A Biochemical Characterization Of The Fusion Proteins From Enveloped Rna Viruses, Chelsea T. Barrett Jan 2021

A Biochemical Characterization Of The Fusion Proteins From Enveloped Rna Viruses, Chelsea T. Barrett

Theses and Dissertations--Molecular and Cellular Biochemistry

Enveloped viruses must bind target cells and then fuse the viral membrane with a cell membrane to enter a host cell. These viruses use one or more surface glycoproteins to carry out these critical functions. The surface glycoprotein that carries out the fusion function, termed a fusion protein, is divided into three classes based on structural similarities. Some of the most studied human viral pathogens, such as human immunodeficiency virus (HIV), Ebola virus, influenza, measles, and the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), possess class I fusion proteins. Following synthesis, class I fusion proteins associate as non-covalently …


Pre-Clinical Advancements In Biomarkers, Tools, And Therapeutics For A Metabolic Neurodegenerative Disease, Zoë Simmons Jan 2021

Pre-Clinical Advancements In Biomarkers, Tools, And Therapeutics For A Metabolic Neurodegenerative Disease, Zoë Simmons

Theses and Dissertations--Molecular and Cellular Biochemistry

Glycogen is the storage form of glucose and a highly important substrate for cellular metabolism. Characterization of the enzymes and mechanisms of glycogen metabolism began over 70 years ago and over the last 20 years, a previously unknown protein called laforin has emerged as an important contributor to glycogen metabolism homeostasis. Multiple labs demonstrated that laforin is a glycogen phosphatase and mutations in the gene encoding laforin cause the formation of aberrant glycogen-like aggregates called Lafora bodies (LBs). LBs are cytoplasmic, water-insoluble aggregates that drive neurodegeneration and early death in Lafora disease (LD) patients. The direct relationship between mutated laforin, …


Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney Jan 2021

Therapeutic Targeting Of Leukemia Stem Cells To Prevent T-Cell Acute Lymphoblastic Leukemia Relapse, Meghan G. Haney

Theses and Dissertations--Molecular and Cellular Biochemistry

The survival rate of T-cell Acute Lymphoblastic Leukemia (T-ALL) relapse is a dismal 10% of affected adults and 30% of children, largely due to the relapsed disease being more aggressive and treatment resistant than the initial disease. Relapse is thought to occur because conventional chemotherapies are unable to reliably eliminate a unique cell type known as leukemia stem (or propagating) cells (LSCs). LSCs are the only cells within the leukemia with the ability to self-renew and remake or replenish the ALL from a single cell. Currently, the pathways governing self-renewal in LSCs are largely unknown, precluding our ability to successfully …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs Jan 2021

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs

Theses and Dissertations--Molecular and Cellular Biochemistry

Hendra virus (HeV) and human metapneumovirus (HMPV) are negative-sense, singled-stranded RNA viruses. The paramyxovirus HeV is classified as a biosafety level 4 pathogen due to its high fatality rate and the lack of a human vaccine or antiviral treatment. HMPV is a widespread pneumovirus that causes respiratory tract infections which are particularly dangerous for young children, immunocompromised individuals, and the elderly. Like HeV, no vaccines or therapies are available to combat HMPV infections. These viruses fuse their lipid envelopes with a cell to initiate infection. Blocking cell entry is a promising approach for antiviral development, and many vaccines are designed …


Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden Jan 2021

Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden

Theses and Dissertations--Molecular and Cellular Biochemistry

Under pathophysiological conditions, the microtubule protein tau (MAPT) forms neurofibrillary tangles that are the hallmark of sporadic Alzheimer’s disease as well as familial frontotemporal dementias linked to chromosome 17 (FTDP-17). In this work, I report that MAPT forms circular RNAs through backsplicing of exon 12 to either exon 10 or exon 7 (12→10; 12→7), and that these circular RNAs are translated into proteins.

Using stable cell lines overexpressing the circular tau RNAs 12→7 and 12→10, we have discovered that the tau circular RNA 12→7 is translated in a rolling circle, giving rise to multiple proteins. This circular RNA …


Entry And Early Infection Of Non-Segmented Negative Sense Rna Viruses, Jean Mawuena Branttie Jan 2021

Entry And Early Infection Of Non-Segmented Negative Sense Rna Viruses, Jean Mawuena Branttie

Theses and Dissertations--Molecular and Cellular Biochemistry

Paramyxoviruses, pneumoviruses, and other non-segmented negative sense (NNS) RNA viruses have historically been of public health concern. Although their genomes are typically small (up to 19kbs) they are able to inflict large-scale detrimental pathologies on host cells. Human metapneumovirus (HMPV) is a widespread pathogen and is a NNS RNA virus. HMPV results respiratory tract infections and is particularly dangerous for preterm infants, the elderly, and immunocompromised individuals. Other viruses within the NNS RNA virus order include the deadly Ebola, Hendra, and Nipah viruses (EBOV, HeV, and NiV), as well as the re-emerging measles virus (MeV). Despite their public impact, there …


Substrate Trafficking Within The Type Vii Secretion Systems Of Pathogenic Mycobacteria, Zachary A. Williamson Jan 2021

Substrate Trafficking Within The Type Vii Secretion Systems Of Pathogenic Mycobacteria, Zachary A. Williamson

Theses and Dissertations--Molecular and Cellular Biochemistry

Tuberculosis (TB), primarily caused by infection of Mycobacterium tuberculosis (Mtb) in the lungs, is the deadliest infectious bacterial disease killing 1.5 million people annually. A major determinant of virulence is active secretion through three specialized type VII secretion (ESX) systems; ESX-1, ESX-3, and ESX-5. A large group of substrates exported by the ESX systems is the PE (Proline-Glutamine) and PPE (Proline-Proline-Glutamate) families of proteins, which are highly expanded in the pathogenic species of Mycobacteria and encompass over 7% of Mtb’s genome coding capacity. PE and PPE proteins interact together to form PE-PPE heterodimers, and are secreted through …


Pneumovirus Infections: Understanding Rsv And Hmpv Entry, Replication, And Spread, Jonathan T. Kinder Jan 2020

Pneumovirus Infections: Understanding Rsv And Hmpv Entry, Replication, And Spread, Jonathan T. Kinder

Theses and Dissertations--Molecular and Cellular Biochemistry

Pneumoviruses including human metapneumovirus (HMPV) and respiratory syncytial virus (RSV) are significant causes of respiratory tract infections globally. Children, elderly, and immunocompromised patients are at the greatest risk for developing severe infections, which can have devastating outcomes. Although these viruses are ubiquitous with significant impacts on human health, there are no antivirals or vaccines available. The only FDA approved therapy is a monoclonal antibody for RSV, given prophylactically during the infectious season, and this treatment is only available for high risk infants. The work presented in this thesis aims to increase our understanding of how these viruses enter, replicate, and …


The Oncogenic Role Of The Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3) In T-Cell Acute Lymphoblastic Leukemia, Min Wei Jan 2020

The Oncogenic Role Of The Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3) In T-Cell Acute Lymphoblastic Leukemia, Min Wei

Theses and Dissertations--Molecular and Cellular Biochemistry

T-cell Acute Lymphoblastic Leukemia (T-ALL) is an aggressive blood cancer. There are no immunotherapies and few molecularly targeted therapeutics available for the treatment of this malignancy. The identification and characterization of genes and pathways that drive T-ALL progression is critical for the development of new therapies for T-ALL. The protein tyrosine phosphatase PTP4A3, also known as PRL-3, has been extensively reported to play a causative role in numerous cancers, including several types of blood malignancies. However, its role in T-ALL is not well defined.

Here, we determined that the PRL-3 plays a critical role in T-ALL initiation and progression by …


Epigenetic Implications In Inorganic Arsenic-Mediated Carcinogenesis, Meredith Eckstein Jan 2020

Epigenetic Implications In Inorganic Arsenic-Mediated Carcinogenesis, Meredith Eckstein

Theses and Dissertations--Molecular and Cellular Biochemistry

Chronic, low dose exposure to inorganic arsenic (iAs) is a public health concern throughout the world, contributing to the development of many diseases, including lung cancer. Several mechanisms for iAs-mediated carcinogenesis have been proposed, of which the production of reactive oxygen species and formation of chromosomal aberrations are the most studied. Another equally important, yet less studied mechanism is dysregulation of epigenetic marks. “Epigenetics” refers to changes that occur on the DNA and chromatin that do not alter base pair identity, but alter compaction, expression, and regulation of specific DNA sequences. There are several types of epigenetic marks including histone …


The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou Jan 2019

The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou

Theses and Dissertations--Molecular and Cellular Biochemistry

RBMS3 belongs to the family of c-myc gene single-strand binding proteins (MSSPs) that play important roles in transcriptional regulation. Here, we show that RBMS3 functions as a tumor promoter in triple-negative breast cancer (TNBC), a highly aggressive BC subtype. Analysis of RBMS3 expression shows that RBMS3 is upregulated at both mRNA and protein levels in TNBC cells. Functionally, overexpression of RBMS3 increases cell migration, invasion and cancer stem cell (CSC) behaviors. Moreover, RBMS3 induces expression of epithelial-mesenchymal transition (EMT) and CSC markers. Conversely, loss of RBMS3 in TNBC BT549 cells inhibits cell proliferation, migration and mesenchymal phenotype. Correlation analysis shows …


Semisynthetic Aurones: A Family Of Newly Discovered Tubulin Inhibitors As Antineoplastic Agents, Yanqi Xie Jan 2019

Semisynthetic Aurones: A Family Of Newly Discovered Tubulin Inhibitors As Antineoplastic Agents, Yanqi Xie

Theses and Dissertations--Molecular and Cellular Biochemistry

Aurones belong to an uncommon class of plant flavonoids that provide the bright yellow coloration of some ornamental flowers and that possess a range of biological activities. Structure-activity relationships (SAR) in the aurone pharmacophore identified heterocyclic variants of the (Z)-2-benzylidene-6-hydroxybenzofuran-3(2H)-one scaffold that possessed low nanomolar in vitro potency in cell proliferation assays using various cancer cell lines, in vivo potency in prostate cancer PC-3 xenograft and zebrafish models, selectivity for the colchicine-binding site on tubulin, and absence of appreciable toxicity. Among the biologically active analogs developed in the course of this dissertation work were (Z …


Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen Jan 2019

Automatic 13C Chemical Shift Reference Correction Of Protein Nmr Spectral Data Using Data Mining And Bayesian Statistical Modeling, Xi Chen

Theses and Dissertations--Molecular and Cellular Biochemistry

Nuclear magnetic resonance (NMR) is a highly versatile analytical technique for studying molecular configuration, conformation, and dynamics, especially of biomacromolecules such as proteins. However, due to the intrinsic properties of NMR experiments, results from the NMR instruments require a refencing step before the down-the-line analysis. Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamentally limits and even prevents effective study of biomacromolecules via NMR. There is no available method that can rereference carbon chemical shifts from protein NMR without secondary experimental information such as structure or resonance assignment.

To solve this problem, we …


Computational Tools For The Dynamic Categorization And Augmented Utilization Of The Gene Ontology, Eugene Waverly Hinderer Iii Jan 2019

Computational Tools For The Dynamic Categorization And Augmented Utilization Of The Gene Ontology, Eugene Waverly Hinderer Iii

Theses and Dissertations--Molecular and Cellular Biochemistry

Ontologies provide an organization of language, in the form of a network or graph, which is amenable to computational analysis while remaining human-readable. Although they are used in a variety of disciplines, ontologies in the biomedical field, such as Gene Ontology, are of interest for their role in organizing terminology used to describe—among other concepts—the functions, locations, and processes of genes and gene-products. Due to the consistency and level of automation that ontologies provide for such annotations, methods for finding enriched biological terminology from a set of differentially identified genes in a tissue or cell sample have been developed to …


Computational Tools For The Untargeted Assignment Of Ft-Ms Metabolomics Datasets, Joshua Merritt Mitchell Jan 2019

Computational Tools For The Untargeted Assignment Of Ft-Ms Metabolomics Datasets, Joshua Merritt Mitchell

Theses and Dissertations--Molecular and Cellular Biochemistry

Metabolomics is the study of metabolomes, the sets of metabolites observed in living systems. Metabolism interconverts these metabolites to provide the molecules and energy necessary for life processes. Many disease processes, including cancer, have a significant metabolic component that manifests as differences in what metabolites are present and in what quantities they are produced and utilized. Thus, using metabolomics, differences between metabolomes in disease and non-disease states can be detected and these differences improve our understanding of disease processes at the molecular level. Despite the potential benefits of metabolomics, the comprehensive investigation of metabolomes remains difficult.

A popular analytical technique …


Biochemical Approaches For The Diagnosis And Treatment Of Lafora Disease, Mary Kathryn Brewer Jan 2019

Biochemical Approaches For The Diagnosis And Treatment Of Lafora Disease, Mary Kathryn Brewer

Theses and Dissertations--Molecular and Cellular Biochemistry

Glycogen is the sole carbohydrate storage molecule found in mammalian cells and plays an important role in cellular metabolism in nearly all tissues, including the brain. Defects in glycogen metabolism underlie the glycogen storage diseases (GSDs), genetic disorders with variable clinical phenotypes depending on the mutation type and affected gene(s). Lafora disease (LD) is a fatal form of progressive myoclonus epilepsy and a non-classical GSD. LD typically manifests in adolescence with tonic-clonic seizures, myoclonus, and a rapid, insidious progression. Patients experience increasingly severe and frequent epileptic episodes, loss of speech and muscular control, disinhibited dementia, and severe cognitive decline; death …


Vascular Cognitive Impairment And Dementia: The Importance Of Mixed Pathologies From Mouse Models To Humans, Alex Marian Helman Jan 2018

Vascular Cognitive Impairment And Dementia: The Importance Of Mixed Pathologies From Mouse Models To Humans, Alex Marian Helman

Theses and Dissertations--Molecular and Cellular Biochemistry

Age-related neurologic disease is a significant and growing burden on our society. Although the largest share of research effort has typically been devoted to the common neurodegenerative illnesses (such as Alzheimer’s disease, or AD), the reality is that nearly all cases of neurodegenerative disease possess elements of mixed pathology. Vascular contributions to cognitive impairment and dementia (VCID) is a complex form of dementia, combining aspects of vascular disease and other forms of dementia, such as Alzheimer’s disease. This pathology is heterogeneous and can include cerebral amyloid angiopathy (CAA), hemorrhages, white matter infarcts, and changes to the neurovascular unit. Given the …


The Function Of Erbin, A Scaffold Protein, As A Tumor Suppressor In Colon Cancer, Payton D. Stevens Jan 2018

The Function Of Erbin, A Scaffold Protein, As A Tumor Suppressor In Colon Cancer, Payton D. Stevens

Theses and Dissertations--Molecular and Cellular Biochemistry

Erbin belongs to the LAP (leucine-rich repeat and PDZ domain) family of scaffolding proteins that play important roles in orchestrating cell signaling. Here, we show that Erbin functions as a tumor suppressor in colon cancer. Analysis of Erbin expression in patient specimens reveals that Erbin is downregulated at both mRNA and protein levels in tumor tissues. Functionally, knockdown of Erbin disrupts epithelial cell polarity and increases cell proliferation in 3D culture. In addition, silencing Erbin results in an increase in the amplitude and duration of signaling through Akt and RAS/RAF pathways. Moreover, Erbin-loss induces epithelial-mesenchymal transition (EMT), which coincides with …


Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi Jan 2018

Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi

Theses and Dissertations--Molecular and Cellular Biochemistry

Upon vascular injury, activated blood platelets fuse their granules to the plasma membrane and release cargo to regulate the vascular microenvironment, a dynamic process central to platelet function in many critical processes including hemostasis, thrombosis, immunity, wound healing, angiogenesis etc. This granule- plasma membrane fusion is mediated by a family of membrane proteins- Soluble N-ethyl maleimide Attachment Receptor Proteins(SNAREs). SNAREs that reside on vesicle (v-SNAREs) /Vesicle-Associated Membrane Proteins(VAMPs) interact with target/t-SNAREs forming a trans-bilayer complex that facilitates granule fusion. Though many components of exocytic machinery are identified, it is still not clear how it could be manipulated to prevent …


Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang Jan 2018

Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang

Theses and Dissertations--Molecular and Cellular Biochemistry

Signaling scaffolds are critical for the correct spatial organization of enzymes within the ERK1/2 signaling pathway and proper transmission of intracellular information. However, mechanisms that control molecular dynamics within scaffolding complexes, as well as biological activities regulated by the specific assemblies, remain unclear.

The scaffold protein Shoc2 is critical for transmission of the ERK1/2 pathway signals. Shoc2 accelerates ERK1/2 signaling by integrating Ras and RAF-1 enzymes into a multi-protein complex. Germ-line mutations in shoc2 cause Noonan-like RASopathy, a disorder with a wide spectrum of developmental deficiencies. However, the physiological role of Shoc2, the nature of ERK1/2 signals transduced through this …


Viral Fusion Protein Tm-Tm Interactions: Modulators Of Protein Function And Potential Antiviral Targets, Stacy Webb Jan 2017

Viral Fusion Protein Tm-Tm Interactions: Modulators Of Protein Function And Potential Antiviral Targets, Stacy Webb

Theses and Dissertations--Molecular and Cellular Biochemistry

Enveloped viruses, such as HIV, influenza, and Ebola, utilize surface glycoproteins to bind and fuse with a target cell membrane. This fusion event is necessary for release of viral genomic material so the virus can ultimately reproduce and spread. The recently emerged Hendra virus (HeV) is a negative-sense, single-stranded RNA paramyxovirus that presents a considerable threat to human health as there are currently no human vaccines or antivirals available. The HeV utilizes two surface glycoproteins, the fusion protein (F) and the attachment protein (G), to drive membrane fusion. Through this process, the F protein undergoes an irreversible conformational change, transitioning …


Platelet Endocytosis: Roles In Hemostasis And Innate Immunity, Meenakshi Banerjee Jan 2017

Platelet Endocytosis: Roles In Hemostasis And Innate Immunity, Meenakshi Banerjee

Theses and Dissertations--Molecular and Cellular Biochemistry

Endocytosis is key to fibrinogen (Fg) uptake, receptor trafficking of integrins (αIIbβ3, αvβ3) and purinergic receptors (P2Y1, P2Y12), and thereby for normal platelet function. However, platelet endocytosis could potentially be critical for actively sensing changes in vascular micro-environments and responding accordingly to what is being taken up. This is a more dynamic view of platelets as active surveyors of the vasculature; extending the importance of platelet endocytosis beyond granule biogenesis and perhaps even hemostasis. The mechanistic underpinnings of endocytosis, its importance in platelets, and the molecular machinery required …


The Dynamic Nature Of Chromatin, Caitlyn M. Riedmann Jan 2017

The Dynamic Nature Of Chromatin, Caitlyn M. Riedmann

Theses and Dissertations--Molecular and Cellular Biochemistry

Eukaryotic organisms contain their entire genome in the nucleus of their cells. In order to fit within the nucleus, genomic DNA wraps into nucleosomes, the basic, repeating unit of chromatin. Nucleosomes wrap around each other to form higher order chromatin structures. Here we study many factors that affect, or are effected by, chromatin structure including: (1) how low-dose inorganic arsenic (iAs) changes chromatin structures and their relation to global transcription and splicing patterns, and (2) how chromatin architectural proteins (CAPs) bind to and change nucleosome dynamics and DNA target site accessibility.

Despite iAs’s non-mutagenic nature, chronic exposure to low doses …