Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Polymer Based Nanocomposites With Nanofibers And Exfoliated Clay, Michael Meador, Darrell Reneker Jul 2014

Polymer Based Nanocomposites With Nanofibers And Exfoliated Clay, Michael Meador, Darrell Reneker

Darrell Hyson Reneker

Polymer solutions, containing clay sheets, were electrospun into nanofibers and microfibers that contained clay sheets inside. Controllable removal of polymer by plasma etching from the surface of fibers revealed the arrangement of clay. The shape, flexibility, size distribution and arrangement of clay sheets were observed by transmission and scanning electron microscopy. The clay sheets were partially aligned in big fibers with normal direction of clay sheets perpendicular to fiber axis. Crumpling of clay sheets inside fibers was observed when the fiber diameter was comparable to the lateral size of clay sheets. Single sheets of clay were observed both by catching …


Spectroscopic Investigation Into Oxidative Degradation Of Silica-Supported Amine Sorbents For Co2 Capture, Chakravartula Srikanth, Steven Chuang Jul 2014

Spectroscopic Investigation Into Oxidative Degradation Of Silica-Supported Amine Sorbents For Co2 Capture, Chakravartula Srikanth, Steven Chuang

Steven S.C. Chuang

Oxidative degradation characteristics of silica-supported amine sorbents with varying amounts of tetraethylenepentamine (TEPA) and polyethylene glycol (PEG; P200 or P600 represents PEG with molecular weights of 200 or 600) have been studied by IR and NMR spectroscopy. Thermal treatment of the sorbents and liquid TEPA at 100 °C for 12 h changed their color from white to yellow. The CO2 capture capacity of the TEPA/SiO2 sorbents (i.e., SiO2-supported TEPA with a TEPA/SiO2 ratio of 25:75) decreased by more than 60 %. IR and NMR spectroscopy studies showed that the yellow color of the degraded sorbents resulted from the formation of …


Application Of The Thermal Flash Technique For Low Thermal Diffusivity Micro/Nanofibers, Michael T. Demko, Zhenting Dai, Han Yan, William P. King, Miko Cakmak, Alexis R. Abramson Apr 2014

Application Of The Thermal Flash Technique For Low Thermal Diffusivity Micro/Nanofibers, Michael T. Demko, Zhenting Dai, Han Yan, William P. King, Miko Cakmak, Alexis R. Abramson

Mukerrem Cakmak

The thermal flash method was developed to characterize the thermal diffusivity of micro/nanofibers without concern for thermal contact resistance, which is commonly a barrier to accurate thermal measurement of these materials. Within a scanning electron microscope, a micromanipulator supplies instantaneous heating to the micro/nanofiber, and the resulting transient thermal response is detected at a microfabricated silicon sensor. These data are used to determine thermal diffusivity. Glass fibers of diameter 15 mu m had a measured diffusivity of 1.21x10(-7) m(2)/s; polyimide fibers of diameters 570 and 271 nm exhibited diffusivities of 5.97x10(-8) and 6.28x10(-8) m(2)/s, respectively, which compare favorably with bulk …


Surface And Biomolecular Forces Of Conducting Polymers, Michael J. Higgins, Gordon G. Wallace Mar 2014

Surface And Biomolecular Forces Of Conducting Polymers, Michael J. Higgins, Gordon G. Wallace

Gordon Wallace

In this review, we provide insight into the surface forces of conducting polymers, a class of intelligent materials that offer unique strategies for controlling biomolecular interactions in wide-ranging biomedical applications. Critical to the success of these applications is that the polymer interface is exposed to biological fluids whose interactions are controlled through the polymer surface chemistry and electrochemical switching of the surface properties. There is, however, little known about the intermolecular and surface forces that govern these interactions. Therefore, the purpose of this review is to more closely examine the forces that mediate interactions with biological entities, including forces such …


Microstructures Of Conducting Polymers: Patterning And Actuation Study, Babita Gaihre, Bo Weng, Syed A. Ashraf, Geoffrey M. Spinks, Peter C. Innis, Gordon G. Wallace Mar 2014

Microstructures Of Conducting Polymers: Patterning And Actuation Study, Babita Gaihre, Bo Weng, Syed A. Ashraf, Geoffrey M. Spinks, Peter C. Innis, Gordon G. Wallace

Gordon Wallace

The conducting polymers exhibit electrochemically driven expansion and shrinkage due to ingress and egress of dopant ions in response to potential applied. In this paper, we report on patterning of microdots and microsquares of polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,3-dihexyl-3-4-dihydro-2H-thieno[3,4b][1,4]-dioxepine PProDOT(Hx) 2 and their behaviour under voltage change. Stainless steel mesh was used to deposit microdots and inkjet-printed cellulose girds were used to deposit microsqures of the conducting polymers on the ITO surface. It was found that PPy showed distinct actuation in the z direction while colour change was prominent in the case of PEDOT and PProDOT(Hx)2.


Colour Tunable Electrochromic Devices Based On Pprodot-(Hx)2 And Pprodot-(Ethx)2 Polymers, Bo Weng, Syed Ashraf, Peter C. Innis, Gordon G. Wallace Mar 2014

Colour Tunable Electrochromic Devices Based On Pprodot-(Hx)2 And Pprodot-(Ethx)2 Polymers, Bo Weng, Syed Ashraf, Peter C. Innis, Gordon G. Wallace

Gordon Wallace

The most commonly used method to tune the colour transition states of an ECD is to modify the chemical structure of the electrochromic polymers to achieve the desired transparent to dark state switching colours. However, this approach can present significant synthetic challenges that typically result in a compromise in device performance parameters such as contrast range or stability as well as solvent processability. In this study we have investigated tuning the dark-state colour of an ECD (at +0.8 V) by solution mixing poly(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT-(Hx)2), which has an excellent contrast performance but with an esthetically undesirable purple colour transition, with poly(3,3-bis(2-ethylhexyl)-3,4-dihydro-2H-thieno …


Optical Switching Of Protein Interactions On Photosensitive-Electroactive Polymers Measured By Atomic Force Microscopy, Amy Gelmi, Michele Zanoni, Michael J. Higgins, Sanjeev Gambhir, David L. Officer, Dermot Diamond, Gordon G. Wallace Mar 2014

Optical Switching Of Protein Interactions On Photosensitive-Electroactive Polymers Measured By Atomic Force Microscopy, Amy Gelmi, Michele Zanoni, Michael J. Higgins, Sanjeev Gambhir, David L. Officer, Dermot Diamond, Gordon G. Wallace

Gordon Wallace

The ability to switch the physico-chemical properties of conducting polymers opens up new possibilities for a range of applications. Appropriately functionalised materials can provide routes to multi-modal switching, for example, in response to light and/or electrochemical stimuli. This capability is important in the field of bionics wherein remote and temporal control of the properties of materials is becoming attractive. The ability to actuate a film via photonic stimuli is particularly interesting as it facilitates the modulation of interactions between host binding sites and potential guest molecules. In this work, we studied two different poly-terthiophenes: one was functionalised with a spiropyran …


In Vitro Growth And Differentiation Of Primary Myoblasts On Thiophene Based Conducting Polymers, Anita F. Quigley, Klaudia K. Wagner, Magdalena Kita, Kerry J. Gilmore, Michael J. Higgins, Robert D. Breukers, Simon E. Moulton, Graeme M. Clark, Anthony Penington, Gordon G. Wallace, David L. Officer, Robert M. Kapsa Mar 2014

In Vitro Growth And Differentiation Of Primary Myoblasts On Thiophene Based Conducting Polymers, Anita F. Quigley, Klaudia K. Wagner, Magdalena Kita, Kerry J. Gilmore, Michael J. Higgins, Robert D. Breukers, Simon E. Moulton, Graeme M. Clark, Anthony Penington, Gordon G. Wallace, David L. Officer, Robert M. Kapsa

Gordon Wallace

Polythiophenes are attractive candidate polymers for use in synthetic cell scaffolds as they are amenable to modification of functional groups as a means by which to increase biocompatibility. In the current study we analysed the physical properties and response of primary myoblasts to three thiophene polymers synthesized from either a basic bithiophene monomer or from one of two different thiophene monomers with alkoxy functional groups. In addition, the effect of the dopants pTS- and ClO4 - was investigated. In general, it was found that pTS- doped polymers were significantly smoother and tended to be more hydrophilic than their ClO 4 …