Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Characterizing Boreal Peatland Plant Composition And Species Diversity With Hyperspectral Remote Sensing, Mara Y. Mcpartland, Michael J. Falkowski, Jason R. Reinhardy, Evan Kane, Randall K Kolka, Merritt R. Turetsky, Et Al. Jul 2019

Characterizing Boreal Peatland Plant Composition And Species Diversity With Hyperspectral Remote Sensing, Mara Y. Mcpartland, Michael J. Falkowski, Jason R. Reinhardy, Evan Kane, Randall K Kolka, Merritt R. Turetsky, Et Al.

Michigan Tech Publications

Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. …


Spatial And Temporal Variability Of Inherent And Apparent Optical Properties In Western Lake Erie: Implications For Water Quality Remote Sensing, Michael Sayers, Karl Bosse, Robert Shuchman, Steven A. Ruberg, Gary L. Fahnenstiel, George Leshkevich, Et Al. Jun 2019

Spatial And Temporal Variability Of Inherent And Apparent Optical Properties In Western Lake Erie: Implications For Water Quality Remote Sensing, Michael Sayers, Karl Bosse, Robert Shuchman, Steven A. Ruberg, Gary L. Fahnenstiel, George Leshkevich, Et Al.

Michigan Tech Publications

Lake Erie has experienced dramatic changes in water quality over the past several decades requiring extensive monitoring to assess effectiveness of adaptive management strategies. Remote sensing offers a unique potential to provide synoptic monitoring at daily time scales complementing in-situ sampling activities occurring in Lake Erie. Bio-optical remote sensing algorithms require knowledge about the inherent optical properties (IOPs) of the water for parameterization to produce robust water quality products. This study reports new IOP and apparent optical property (AOP) datasets for western Lake Erie that encapsulate the May–October period for 2015 and 2016 at weekly sampling intervals. Previously reported IOP …


Determining Remote Sensing Spatial Resolution Requirements For The Monitoring Of Harmful Algal Blooms In The Great Lakes, John Lekki, Eric Deutsch, Michael Sayers, Karl Bosse, Robert Anderson, Roger Tokars, Reid W. Sawtell Jun 2019

Determining Remote Sensing Spatial Resolution Requirements For The Monitoring Of Harmful Algal Blooms In The Great Lakes, John Lekki, Eric Deutsch, Michael Sayers, Karl Bosse, Robert Anderson, Roger Tokars, Reid W. Sawtell

Michigan Tech Publications

Harmful algal blooms (HABs) have become a major health and environmental concern in the Great Lakes. In 2014, severe HABs prompted the State of Ohio to request NASA Glenn Research Center (GRC) to assist with monitoring algal blooms in Lake Erie. The most notable species of HAB is Microcystis aeruginosa, a hepatotoxin producing cyanobacteria that is responsible for liver complications for humans and other fauna that come in contact with these blooms. NASA GRC conducts semiweekly flights in order to gather up-to-date imagery regarding the blooms' spatial extents and concentrations. Airborne hyperspectral imagery is collected using two hyperspectral imagers, HSI-2 …


Satellite Monitoring Of Harmful Algal Blooms In The Western Basin Of Lake Erie: A 20-Year Time-Series, Michael Sayers, Amanda Grimm, Robert Shuchman, Karl Bosse, Gary L. Fahnenstiel, Steven A. Ruberg, George A. Leshkevich Jun 2019

Satellite Monitoring Of Harmful Algal Blooms In The Western Basin Of Lake Erie: A 20-Year Time-Series, Michael Sayers, Amanda Grimm, Robert Shuchman, Karl Bosse, Gary L. Fahnenstiel, Steven A. Ruberg, George A. Leshkevich

Michigan Tech Publications

Blooms of harmful cyanobacteria (cyanoHABs) have occurred on an annual basis in western Lake Erie for more than a decade. Previously, we developed and validated an algorithm to map the extent of the submerged and surface scum components of cyanoHABs using MODIS ocean-color satellite data. The algorithm maps submerged cyanoHABs by identifying high chlorophyll concentrations (>18 mg/m3) combined with water temperature >20 °C, while cyanoHABs surface scums are mapped using near-infrared reflectance values. Here, we adapted this algorithm for the SeaWiFS sensor to map the annual areal extents of cyanoHABs in the Western Basin of Lake Erie for the …


Coastal Ecosystem Investigations With Lidar (Light Detection And Ranging) And Bottom Reflectance: Lake Superior Reef Threatened By Migrating Tailings, Charlie Kerfoot, Martin M. Hobmeier, Sarah Green, Foad Yousef, Colin Brooks, Robert Shuchman, Michael Sayers, Et Al. May 2019

Coastal Ecosystem Investigations With Lidar (Light Detection And Ranging) And Bottom Reflectance: Lake Superior Reef Threatened By Migrating Tailings, Charlie Kerfoot, Martin M. Hobmeier, Sarah Green, Foad Yousef, Colin Brooks, Robert Shuchman, Michael Sayers, Et Al.

Michigan Tech Publications

Where light penetration is excellent, the combination of LiDAR (Light Detection And Ranging) and passive bottom reflectance (multispectral, hyperspectral) greatly aids environmental studies. Over a century ago, two stamp mills (Mohawk and Wolverine) released 22.7 million metric tons of copper-rich tailings into Grand Traverse Bay (Lake Superior). The tailings are crushed basalt, with low albedo and spectral signatures different from natural bedrock (Jacobsville Sandstone) and bedrock-derived quartz sands. Multiple Lidar (CHARTS and CZMIL) over-flights between 2008–2016—complemented by ground-truth (Ponar sediment sampling, ROV photography) and passive bottom reflectance studies (3-band NAIP; 13-band Sentinal-2 orbital satellite; 48 and 288-band CASI)—clarified shoreline and …


Evidence Of Instability In Previously-Mapped Landslides As Measured Using Gps, Optical, And Sar Data Between 2007 And 2017: A Case Study In The Portuguese Bend Landslide Complex, California, El Hachemi Y. Bouali, Thomas Oommen, Rüdiger Escobar-Wolf Apr 2019

Evidence Of Instability In Previously-Mapped Landslides As Measured Using Gps, Optical, And Sar Data Between 2007 And 2017: A Case Study In The Portuguese Bend Landslide Complex, California, El Hachemi Y. Bouali, Thomas Oommen, Rüdiger Escobar-Wolf

Michigan Tech Publications

Velocity dictates the destructive potential of a landslide. A combination of synthetic aperture radar (SAR), optical, and GPS data were used to maximize spatial and temporal coverage to monitor continuously-moving portions of the Portuguese Bend landslide complex on the Palos Verdes Peninsula in Southern California. Forty SAR images from the COSMO-SkyMed satellite, acquired between 19 July 2012 and 27 September 2014, were processed using Persistent Scatterer Interferometry (PSI). Eight optical images from the WorldView-2 satellite, acquired between 20 February 2011 and 16 February 2016, were processed using the Co-registration of Optically Sensed Images and Correlation (COSI-Corr) technique. Displacement measurements were …


Spatial-Temporal Variability Of In Situ Cyanobacteria Vertical Structure In Western Lake Erie: Implications For Remote Sensing Observations, Karl Bosse, Michael Sayers, Robert Shuchman, Gary L. Fahnenstiel, Steven A. Ruberg, David L. Fanslow, Dack G. Stuart, Thomas H. Johengen, Ashley M. Burtner Feb 2019

Spatial-Temporal Variability Of In Situ Cyanobacteria Vertical Structure In Western Lake Erie: Implications For Remote Sensing Observations, Karl Bosse, Michael Sayers, Robert Shuchman, Gary L. Fahnenstiel, Steven A. Ruberg, David L. Fanslow, Dack G. Stuart, Thomas H. Johengen, Ashley M. Burtner

Michigan Tech Publications

Remote sensing has provided expanded temporal and spatial range to the study of harmful algal blooms (cyanoHABs) in western Lake Erie, allowing for a greater understanding of bloom dynamics than is possible through in situ sampling. However, satellites are limited in their ability to specifically target cyanobacteria and can only observe the water within the first optical depth. This limits the ability of remote sensing to make conclusions about full water column cyanoHAB biomass if cyanobacteria are vertically stratified. FluoroProbe data were collected at nine stations across western Lake Erie in 2015 and 2016 and analyzed to characterize spatio-temporal variability …