Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Development Of Novel Ultra-High Performance Engineered Cementitious Composites (Uhp-Ecc) For Durable And Resilient Transportation Infrastructure, Gabriel A. Arce, Marwa Hassan, Daniel E. Game Sep 2021

Development Of Novel Ultra-High Performance Engineered Cementitious Composites (Uhp-Ecc) For Durable And Resilient Transportation Infrastructure, Gabriel A. Arce, Marwa Hassan, Daniel E. Game

Publications

The objective of this study was to develop novel UHP-ECC materials utilizing readily available ingredients in Region 6 for the construction and repair of transportation infrastructure. Phase one of this study focused on the development of ultra-high strength cementitious matrices by evaluating the effects of ingredient selection and mixture proportioning on the materials’ compressive strength. Variables evaluated included the mass ratios of silica fume to fly ash (SF/FA), supplementary cementitious materials to cement (SCMs/C), and ordinary sand to microsilica sand (OS/MS). Phase two of the study focused on the development of UHP-ECC materials. To this end, based on the knowledge …


Evaluation Of Bagasse Ash As Cement And Sand Replacement For The Production Of Engineered Cementitious Composites (Ecc), Gabriel Arce, Marwa Hassan, Sujata Subedi, Ana Rivas, Samantha Hidalgo, Hugo Eguez Nov 2020

Evaluation Of Bagasse Ash As Cement And Sand Replacement For The Production Of Engineered Cementitious Composites (Ecc), Gabriel Arce, Marwa Hassan, Sujata Subedi, Ana Rivas, Samantha Hidalgo, Hugo Eguez

Publications

The objective of this study was to develop novel Engineered Cementitious Composites (ECC) materials implementing sugarcane bagasse ash (SCBA). To this end, the effects on the mechanical and physical properties of ECC materials of: (1) Louisiana raw SCBA (RBA) as a partial and complete replacement of sand (i.e., class S mixtures); (2) Louisiana post-processed SCBA (PBA) as a partial replacement of cement (i.e., class C mixtures); and (3) Ecuador raw SCBA (EBA) as a partial and complete replacement of sand (i.e., class S-E mixtures) were studied. Sand replacement levels with RBA and EBA evaluated were 25, 50, 75, and 100% …


Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das Sep 2019

Mitigating Reflective Cracking Through The Use Of A Ductile Concrete Interlayer, Qian Zhang, Mohammad Khattak, Adway Das

Publications

Reflective cracking is considered one of the most important issues that causes premature deterioration of composite pavements. Many types of mitigation methods have been studied in the past. However, they are either not effective in delaying the reflective cracking, or they only extend the service life by a few years. To address this critical issue and significantly extend the service life of the composite pavement, in this research, a ductile interlayer made of engineered cementitious composites (ECC) was proposed. It was hypothesized that by adding a thin layer of highly ductile ECC material between the existing pavement and overlay, reflective …