Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Physical Sciences and Mathematics

Rebecca Cademartiri

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

A Simple Two-Dimensional Model System To Study Electrostatic-Self-Assembly, Rebecca Cademartiri Aug 2012

A Simple Two-Dimensional Model System To Study Electrostatic-Self-Assembly, Rebecca Cademartiri

Rebecca Cademartiri

This paper surveys the variables controlling the lattice structure and charge in macroscopic Coulombic crystals made from electrically charged, millimeter-sized polymer objects (spheres, cubes, and cylinders). Mechanical agitation of these objects inside planar, bounded containers caused them to charge electrically through contact electrification, and to self-assemble. The processes of electrification and self-assembly, and the characteristics of the assemblies, depended on the type of motion used for agitation, on the type of materials used for the objects and the dish, on the size and shape of the objects and the dish, and on the number of objects. Each of the three …


Measuring Markers Of Liver Function Using A Micropatterned Paper Device Designed For Blood From A Fingerstick, Sarah J. Vella, Patrick Beattie, Rebecca Cademartiri, Anna Laromaine, Andres W. Martinez, Scott T. Phillips, Katherine A. Mirica, George M. Whitesides Mar 2012

Measuring Markers Of Liver Function Using A Micropatterned Paper Device Designed For Blood From A Fingerstick, Sarah J. Vella, Patrick Beattie, Rebecca Cademartiri, Anna Laromaine, Andres W. Martinez, Scott T. Phillips, Katherine A. Mirica, George M. Whitesides

Rebecca Cademartiri

This paper describes a paper-based microfluidic device that measures two enzymatic markers of liver function (alkaline phosphatase, ALP, and aspartate aminotransferase, AST) and total serum protein. A device consists of four components: (i) a top plastic sheet, (ii) a filter membrane, (iii) a patterned paper chip containing the reagents necessary for analysis, and (iv) a bottom plastic sheet. The device performs both the sample preparation (separating blood plasma from erythrocytes) and the assays; it also enables both qualitative and quantitative analysis of data. The data obtained from the paper-microfluidic devices show standard deviations in calibration runs and “spiked” standards that …


Macroporous Silica Using A “Sticky” Stöber Process, Rebecca Cademartiri, Michael A. Brook, Robert Pelton, John D. Brennan Jan 2009

Macroporous Silica Using A “Sticky” Stöber Process, Rebecca Cademartiri, Michael A. Brook, Robert Pelton, John D. Brennan

Rebecca Cademartiri

The generation of macroporous silica structures using a sol–gel process generally requires the presence of high molecular weight, water-soluble polymers. We demonstrate that significantly lower molecular weight poly(ethylene glycol) (PEG) polymers can drive a particle aggregation process to generate macroporous silica. Compared to unfunctionalized PEGs (HO–PEG–HO, molecular weight > 10 000 g mol−1), PEG polymers with allyl (A–PEG–A) or silyl end groups (CH2)3Si(OEt)3 (Si–PEG–Si), with molecular weights of 2000 g mol−1 or greater, lead to monolithic macroporous structures derived from aggregates of nearly monodisperse particles. Lower molecular weight (less than 1000 g mol−1) allyl or silyl PEG, or hydroxy-terminated PEG–OH, lead …


Non-Destructive Horseradish Peroxidase Immobilization In Porous Silica Nanoparticles, Rebecca Voss, Michael A. Brook, Jordan Thompson, Yang Chen, Robert H. Pelton, John D. Brennan Sep 2007

Non-Destructive Horseradish Peroxidase Immobilization In Porous Silica Nanoparticles, Rebecca Voss, Michael A. Brook, Jordan Thompson, Yang Chen, Robert H. Pelton, John D. Brennan

Rebecca Cademartiri

The preparation of protein doped silica particles is impeded by the difficulty of incorporating proteins within the silica mesostructure under conditions that do not lead to denaturation. Herein, the synthesis of spherical silica particles (diameter 150 nm–550 nm) under protein friendly conditions in a one step process is described. Diglyceroxysilane (DGS) was reacted in ethanol and methanol-free conditions in pure water or in buffer solutions with or without the presence of additional glycerol. Stabilization of the particles, consistent with steric stabilization, was obtained using poly(ethylene glycol) (PEG) of various molecular weights and with various end groups, including allyl and (CH2)3Si(OEt)3 …


Organosilicas With Chiral Bridges And Self-Generating Mesoporosity, Andreas Ide, Rebecca Voss, Gudrun Scholz, Geoffrey A. Ozin, Markus Antonietti, Arne Thomas May 2007

Organosilicas With Chiral Bridges And Self-Generating Mesoporosity, Andreas Ide, Rebecca Voss, Gudrun Scholz, Geoffrey A. Ozin, Markus Antonietti, Arne Thomas

Rebecca Cademartiri

Amine-functionalized, chiral mesoporous organosilicas were prepared from a rationally designed precursor, which combines the functions of a network builder, a chiral latent functional group, and a porogen in one molecule. The precursors are formed by a convenient enantioselective hydroboration using (S)-monoisopinocampheylborane on an ethylene-bridged silica precursor. These precursors do self-organize when hydrolysis of their inorganic moiety takes place via an aggregation of their organic moiety into hydrophobic domains. After a condensation−ammonolysis sequence mesoporous organosilicas functionalized with chiral amine groups are obtained, with the complete chiral functionalities located at the pore wall surface and therefore accessible to chemical processes. The pore …


Synthesis And Characterization Of Highly Amine Functionalized Mesoporous Organosilicas By An “All-In-One” Approach, Rebecca Voss, Arne Thomas, Markus Antonietti, Geoffrey A. Ozin Aug 2005

Synthesis And Characterization Of Highly Amine Functionalized Mesoporous Organosilicas By An “All-In-One” Approach, Rebecca Voss, Arne Thomas, Markus Antonietti, Geoffrey A. Ozin

Rebecca Cademartiri

Mesoporous organosilicas (MOs) represent a promising class of organic–inorganic nanocomposites for a broad range of applications like catalysis, sensing, separation, or microelectronics. Their distinct feature is the presence of organic groups incorporated into the channel walls of a mesoporous structure. Here, we present a convenient “all-in-one” approach using silsesquioxane surfactant precursors for the functionalization of the channel walls with primary amine groups. The monomer is made by a hydroboration/aminolysis sequence on the base of a commercial monomer, with the template bound to the functionalization site by hydroboration and released after silica condensation and aminolysis. This combination ensures both the placement …


Heterostructures Of Polymer Photonic Crystal Films, Marc Egen, Rebecca Voss, Bernd Griesebock, Rudolf Zentel, Sergei Romanov, Clivia Sotomayor Torres Oct 2003

Heterostructures Of Polymer Photonic Crystal Films, Marc Egen, Rebecca Voss, Bernd Griesebock, Rudolf Zentel, Sergei Romanov, Clivia Sotomayor Torres

Rebecca Cademartiri

This paper describes ways to multilayer opaline films (opaline heterostructures) composed from functional opal layers of spheres with different lattice constants. At first various monodisperse colloidsboth cross-linked and un-cross-linkedwere prepared from methyl methacrylate, methyl α-chloroacrylate, and methyl α-bromoacrylate. These colloids can be crystallized into large, well-oriented opaline films with the help of a “drawing apparatus” by the method of crystallization in a moving meniscus. After annealing, a second opaline film can be crystallized on top of these films and so on. Electron microscopy inspection shows a sharp borderline between the sublayers and no disorder on both sides although the lattice …