Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Iowa State University

Electromagnetics and Photonics

Demagnetization

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Including Effects Of Microstructure And Anisotropy In Theoretical Models Describing Hysteresis Of Ferromagnetic Materials, H. Hauser, Y. Melikhov, David C. Jiles Jan 2007

Including Effects Of Microstructure And Anisotropy In Theoretical Models Describing Hysteresis Of Ferromagnetic Materials, H. Hauser, Y. Melikhov, David C. Jiles

David C. Jiles

Two recent theoreticalhysteresis models (Jiles-Atherton model and energetic model) are examined with respect to their capability to describe the dependence of the magnetization on magnetic field, microstructure, and anisotropy. It is shown that the classical Rayleigh law for the behavior of magnetization at low fields and the Stoner-Wohlfarth theory of domain magnetization rotation in noninteracting magnetic single domain particles can be considered as limiting cases of a more general theoretical treatment of hysteresis in ferromagnetism.