Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Entire DC Network

Gene Response Profiles For Daphnia Pulex Exposed To The Environmental Stressor Cadmium Reveals Novel Crustacean Metallothioneins, Joseph R. Shaw, John K. Colbourne, Jennifer C. Davey, Stephen P. Glaholt, Thomas H. Hampton, Celia Y. Chen, Carol L. Folt, Joshua W. Hamilton Dec 2007

Gene Response Profiles For Daphnia Pulex Exposed To The Environmental Stressor Cadmium Reveals Novel Crustacean Metallothioneins, Joseph R. Shaw, John K. Colbourne, Jennifer C. Davey, Stephen P. Glaholt, Thomas H. Hampton, Celia Y. Chen, Carol L. Folt, Joshua W. Hamilton

Dartmouth Scholarship

Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant.


The Small Rna Repertoire Of Dictyostelium Discoideum And Its Regulation By Components Of The Rnai Pathway, Andrea Hinas, Johan Reimegård, E. Gerhart H. Wagner, Wolfgang Nellen, Victor R. Ambros, Fredrik Soderbum Oct 2007

The Small Rna Repertoire Of Dictyostelium Discoideum And Its Regulation By Components Of The Rnai Pathway, Andrea Hinas, Johan Reimegård, E. Gerhart H. Wagner, Wolfgang Nellen, Victor R. Ambros, Fredrik Soderbum

Dartmouth Scholarship

Small RNAs play crucial roles in regulation of gene expression in many eukaryotes. Here, we report the cloning and characterization of 18–26 nt RNAs in the social amoeba Dictyostelium discoideum . This survey uncovered developmentally regulated microRNA candidates whose biogenesis, at least in one case, is dependent on a Dicer homolog, DrnB. Furthermore, we identified a large number of 21 nt RNAs originating from the DIRS-1 retrotransposon, clusters of which have been suggested to constitute centromeres. Small RNAs from another retrotransposon, Skipper, were significantly up-regulated in strains depleted of the second Dicer-like protein, DrnA, and a putative RNA-dependent RNA polymerase, …


In Vivo Construction Of Recombinant Molecules Within The Caenorhabditis Elegans Germ Line Using Short Regions Of Terminal Homology, Benedict J. Kemp, Julia Hatzold, Laura A. Sternick, Joshua Cornman-Homonoff, Jessica M. Whitaker, Pamela J. Tieu, Eric J. Lambie Sep 2007

In Vivo Construction Of Recombinant Molecules Within The Caenorhabditis Elegans Germ Line Using Short Regions Of Terminal Homology, Benedict J. Kemp, Julia Hatzold, Laura A. Sternick, Joshua Cornman-Homonoff, Jessica M. Whitaker, Pamela J. Tieu, Eric J. Lambie

Dartmouth Scholarship

Homologous recombination provides a means for the in vivoconstruction of recombinant DNA molecules that may be problematic to assemble in vitro . We have investigated the efficiency of recombination within the Caenorhabditis elegans germ line as a function of the length of homology between recombining molecules. Our findings indicate that recombination can occur between molecules that share only 10 bp of terminal homology, and that 25 bp is sufficient to mediate relatively high levels of recombination. Recombination occurs with lower efficiency when the location of the homologous segment is subterminal or internal. As in yeast, recombination can also be …


A Novel Ensemble Learning Method For De Novo Computational Identification Of Dna Binding Sites, Arijit Chakravarty, Jonathan M. Carlson, Radhika S. Khetani, Robert H H. Gross Jul 2007

A Novel Ensemble Learning Method For De Novo Computational Identification Of Dna Binding Sites, Arijit Chakravarty, Jonathan M. Carlson, Radhika S. Khetani, Robert H H. Gross

Dartmouth Scholarship

Despite the diversity of motif representations and search algorithms, the de novo computational identification of transcription factor binding sites remains constrained by the limited accuracy of existing algorithms and the need for user-specified input parameters that describe the motif being sought.ResultsWe present a novel ensemble learning method, SCOPE, that is based on the assumption that transcription factor binding sites belong to one of three broad classes of motifs: non-degenerate, degenerate and gapped motifs. SCOPE employs a unified scoring metric to combine the results from three motif finding algorithms each aimed at the discovery of one of these classes of motifs. …


Crystal Structure Of The Vibrio Cholerae Quorum-Sensing Regulatory Protein Hapr, Rukman S. De Silva, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski, F. Jon Kull May 2007

Crystal Structure Of The Vibrio Cholerae Quorum-Sensing Regulatory Protein Hapr, Rukman S. De Silva, Gabriela Kovacikova, Wei Lin, Ronald K. Taylor, Karen Skorupski, F. Jon Kull

Dartmouth Scholarship

Quorum sensing in Vibrio cholerae involves signaling between two-component sensor protein kinases and the response regulator LuxO to control the expression of the master regulator HapR. HapR, in turn, plays a central role in regulating a number of important processes, such as virulence gene expression and biofilm formation. We have determined the crystal structure of HapR to 2.2-Å resolution. Its structure reveals a dimeric, two-domain molecule with an all-helical structure that is strongly conserved with members of the TetR family of transcriptional regulators. The N-terminal DNA-binding domain contains a helix-turn-helix DNA-binding motif and alteration of certain residues in this domain …


Scope: A Web Server For Practical De Novo Motif Discovery, Jonathan M. Carlson, Arijit Chakravarty, Charles E. Deziel, Robert H. Gross Apr 2007

Scope: A Web Server For Practical De Novo Motif Discovery, Jonathan M. Carlson, Arijit Chakravarty, Charles E. Deziel, Robert H. Gross

Dartmouth Scholarship

SCOPE is a novel parameter-free method for the de novoidentification of potential regulatory motifs in sets of coordinately regulated genes. The SCOPE algorithm combines the output of three component algorithms, each designed to identify a particular class of motifs. Using an ensemble learning approach, SCOPE identifies the best candidate motifs from its component algorithms. In tests on experimentally determined datasets, SCOPE identified motifs with a significantly higher level of accuracy than a number of other web-based motif finders run with their default parameters. Because SCOPE has no adjustable parameters, the web server has an intuitive interface, requiring only a …


A 368-Base-Pair Cis-Acting Hwp1 Promoter Region, Hcr, Of Candida Albicans Confers Hypha-Specific Gene Regulation And Binds Architectural Transcription Factors Nhp6 And Gcf1p, Samin Kim, Michael J. Wolyniak, Janet F. Staab, Paula Sundstrom Apr 2007

A 368-Base-Pair Cis-Acting Hwp1 Promoter Region, Hcr, Of Candida Albicans Confers Hypha-Specific Gene Regulation And Binds Architectural Transcription Factors Nhp6 And Gcf1p, Samin Kim, Michael J. Wolyniak, Janet F. Staab, Paula Sundstrom

Dartmouth Scholarship

To elucidate the molecular mechanisms controlling the expression of the hypha-specific adhesin gene HWP1 of Candida albicans, its promoter was dissected and analyzed using a green fluorescent protein reporter gene. A 368-bp region, the HWP1 control region (HCR), was critical for activation under hypha-inducing conditions and conferred developmental regulation to a heterologous ENO1 promoter. A more distal region of the promoter served to amplify the level of promoter activation. Using gel mobility shift assays, a 249-bp subregion of HCR, HCRa, was found to bind at least four proteins from crude extracts of yeasts and hyphae with differing binding patterns dependent …


The Myc Transactivation Domain Promotes Global Phosphorylation Of The Rna Polymerase Ii Carboxy-Terminal Domain Independently Of Direct Dna Binding, Victoria H. Cowling, Michael D. Cole Jan 2007

The Myc Transactivation Domain Promotes Global Phosphorylation Of The Rna Polymerase Ii Carboxy-Terminal Domain Independently Of Direct Dna Binding, Victoria H. Cowling, Michael D. Cole

Dartmouth Scholarship

Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc−/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters …


A Strong Constitutive Ethylene-Response Phenotype Conferred On Arabidopsis Plants Containing Null Mutations In The Ethylene Receptors Etr1 And Ers1, Xiang Qu, Brenda P. Hall, Zhiyong Gao, G. Eric Schaller Jan 2007

A Strong Constitutive Ethylene-Response Phenotype Conferred On Arabidopsis Plants Containing Null Mutations In The Ethylene Receptors Etr1 And Ers1, Xiang Qu, Brenda P. Hall, Zhiyong Gao, G. Eric Schaller

Dartmouth Scholarship

The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations.