Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Machine Learning On Acoustic Signals Applied To High-Speed Bridge Deck Defect Detection, Yao Chou Dec 2019

Machine Learning On Acoustic Signals Applied To High-Speed Bridge Deck Defect Detection, Yao Chou

Theses and Dissertations

Machine learning techniques are being applied to many data-intensive problems because they can accurately provide classification of complex data using appropriate training. Often, the performance of machine learning can exceed the performance of traditional techniques because machine learning can take advantage of higher dimensionality than traditional algorithms. In this work, acoustic data sets taken using a rapid scanning technique on concrete bridge decks provided an opportunity to both apply machine learning algorithms to improve detection performance and also to investigate the ways that training of neural networks can be aided by data augmentation approaches. Early detection and repair can enhance …


Materials Prediction Using High-Throughput And Machine Learning Techniques, Chandramouli Nyshadham Dec 2019

Materials Prediction Using High-Throughput And Machine Learning Techniques, Chandramouli Nyshadham

Theses and Dissertations

Predicting new materials through virtually screening a large number of hypothetical materials using supercomputers has enabled materials discovery at an accelerated pace. However, the innumerable number of possible hypothetical materials necessitates the development of faster computational methods for speedier screening of materials reducing the time of discovery. In this thesis, I aim to understand and apply two computational methods for materials prediction. The first method deals with a computational high-throughput study of superalloys. Superalloys are materials which exhibit high-temperature strength. A combinatorial high-throughput search across 2224 ternary alloy systems revealed 102 potential superalloys of which 37 are brand new, all …


Groundwater Level Mapping Tool: Development Of A Web Application To Effectively Characterize Groundwater Resources, Steven William Evans Nov 2019

Groundwater Level Mapping Tool: Development Of A Web Application To Effectively Characterize Groundwater Resources, Steven William Evans

Theses and Dissertations

Groundwater is used worldwide as a major source for agricultural irrigation, industrial processes, mining, and drinking water. An accurate understanding of groundwater levels and trends is essential for decision makers to effectively manage groundwater resources throughout an aquifer, ensuring its sustainable development and usage. Unfortunately, groundwater is one of the most challenging and expensive water resources to characterize, quantify, and monitor on a regional basis. Data, though present, are often limited or sporadic, and are generally not used to their full potential to aid decision makers in their groundwater management.This thesis presents a solution to this under-utilization of available data …


The Application Of Synthetic Signals For Ecg Beat Classification, Elliot Morgan Brown Sep 2019

The Application Of Synthetic Signals For Ecg Beat Classification, Elliot Morgan Brown

Theses and Dissertations

A brief overview of electrocardiogram (ECG) properties and the characteristics of various cardiac conditions is given. Two different models are used to generate synthetic ECG signals. Domain knowledge is used to create synthetic examples of 16 different heart beat types with these models. Other techniques for synthesizing ECG signals are explored. Various machine learning models with different combinations of real and synthetic data are used to classify individual heart beats. The performance of the different methods and models are compared, and synthetic data is shown to be useful in beat classification.


Predicting Hardness Of Friction Stir Processed 304l Stainless Steel Using A Finite Element Model And A Random Forest Algorithm, Tyler Alan Mathis Aug 2019

Predicting Hardness Of Friction Stir Processed 304l Stainless Steel Using A Finite Element Model And A Random Forest Algorithm, Tyler Alan Mathis

Theses and Dissertations

Friction stir welding is an advanced welding process that is being investigated for use in many different industries. One area that has been investigated for its application is in healing critical nuclear reactor components that are developing cracks. However, friction stir welding is a complicated process and it is difficult to predict what the final properties of a set of welding parameters will be. This thesis sets forth a method using finite element analysis and a random forest model to accurately predict hardness in the welding nugget after processing. The finite element analysis code used and ALE formulation that enabled …


An Atomistic Approach For The Survey Of Dislocation-Grain Boundary Interactions In Fcc Nickel, Devin William Adams Aug 2019

An Atomistic Approach For The Survey Of Dislocation-Grain Boundary Interactions In Fcc Nickel, Devin William Adams

Theses and Dissertations

It is well known that grain boundaries (GBs) have a strong influence on mechanical properties of polycrystalline materials. Not as well-known is how different GBs interact with dislocations to influence dislocation movement. This work presents a molecular dynamics study of 33 different FCC Ni bicrystals subjected to mechanical loading to induce incident dislocation-GB interactions. The resulting simulations are analyzed to determine properties of the interaction that affect the likelihood of transmission of the dislocation through the GB in an effort to better inform mesoscale models of dislocation movement within polycrystals. It is found that the ability to predict the slip …


Machine Learning Methods For Nanophotonic Design, Simulation, And Operation, Alec Michael Hammond Apr 2019

Machine Learning Methods For Nanophotonic Design, Simulation, And Operation, Alec Michael Hammond

Theses and Dissertations

Interest in nanophotonics continues to grow as integrated optics provides an affordable platform for areas like telecommunications, quantum information processing, and biosensing. Designing and characterizing integrated photonics components and circuits, however, remains a major bottleneck. This is especially true when complex circuits or devices are required to study a particular phenomenon.To address this challenge, this work develops and experimentally validates a novel machine learning design framework for nanophotonic devices that is both practical and intuitive. As case studies, artificial neural networks are trained to model strip waveguides, integrated chirped Bragg gratings, and microring resonators using a small number of simple …


Computational Regiospecific Analysis Of Brain Lipidomic Profiles, Austin Ahlstrom Mar 2019

Computational Regiospecific Analysis Of Brain Lipidomic Profiles, Austin Ahlstrom

Undergraduate Honors Theses

Mass spectrometry provides an extensive data set that can prove unwieldy for practical analytical purposes. Applying programming and machine learning methods to automate region analysis in DESI mass spectrometry of mouse brain tissue can help direct and refine such an otherwise unusable data set. The results carry promise of faster, more reliable analysis of this type, and yield interesting insights into molecular characteristics of regions of interest within these brain samples. These results have significant implications in continued investigation of molecular processes in the brain, along with other aspects of mass spectrometry, collective analysis of biological molecules (i.e. omics), and …