Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 290

Full-Text Articles in Entire DC Network

Modeling And Effects Of Non-Homogeneous Infiltration On Material Properties Of Carbon-Infiltrated Carbon Nanotube Forests, Daniel Owens Snow Aug 2020

Modeling And Effects Of Non-Homogeneous Infiltration On Material Properties Of Carbon-Infiltrated Carbon Nanotube Forests, Daniel Owens Snow

Theses and Dissertations

This work investigates the material properties and production parameters of carbon infiltrated carbon nanotube structures (CI-CNT's). The impact of non homogeneous infiltration and the porosity of cross section regions, coupled with changes in designed geometry, in this case beam width, on the density and modulus of elasticity are compared. Three potential geometric models of beam cross section are proposed and evaluated. 3-point bending, SEM images, and numerical optimization are used to assess the validity of each model and the implications they have for future CI-CNT material applications. Carbon capping near exterior beam surfaces is observed and determined to be a …


Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry Aug 2020

Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for silicon microneedle arrays to extract dermal interstitial fluid (ISF) from human skin. ISF is a cell- free, living tissue medium that is known to contain many of the same, clinical biomarkers of general health, stress response and immune status as in blood. However, a significant barrier to adoption of ISF as a diagnostic matrix is the lack of a rapid, minimally invasive method of access and collection for analysis. Microfabricated chips containing arrays of microneedles that can rapidly and painlessly access and collect dermal ISF for …


Developing Highly Symmetric Microelectromechanical Systems (Mems) Based Butterfly Gyroscopes, Nabeel Ahmad Khan Jul 2020

Developing Highly Symmetric Microelectromechanical Systems (Mems) Based Butterfly Gyroscopes, Nabeel Ahmad Khan

Electronic Theses and Dissertations

Microelectromechanical systems (MEMS) is the technology combining electrical components with mechanical systems at a micro scale. The combination of these two technologies allowed devices to interact with each other and build complex structures. System on the chips are built with components such as masses, electrodes, anchors, actuators and detectors. Reducing the size, weight, energy usage and cost is key while maintaining the sensors integrity. Sensitivity is an important factor when evaluating a gyroscope’s performance. This research presents beam modeling techniques for maximizing mechanical sensitivity of the butterfly resonator for gyroscopic applications. It investigates the geometric aspects of synchronizing beam that …


Towards A High Bias Voltage Mems Filter Using Electrostatic Levitation, Mark Pallay, Ronald Miles, Shahrzad Towfighian May 2020

Towards A High Bias Voltage Mems Filter Using Electrostatic Levitation, Mark Pallay, Ronald Miles, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

Traditional MEMS filters use a comb drive structure that suffers from the pull- in instability, which places a significant limitation on the achievable signal-to- noise ration of the sensor. Because the output signal from a capacitive sensor

is linearly related to the applied voltage, it is desirable to use a capacitive sensor that can withstand large voltages upwards of 100V. However, the pull-in instability causes high voltages to destroy the device and a trade-off between performance and reliability must be made. Electrostatic levitation, which works by pulling electrodes apart instead of together, eliminates the pull-in instability and allows for very …


Microrobots For Wafer Scale Microfactory: Design Fabrication Integration And Control., Ruoshi Zhang May 2020

Microrobots For Wafer Scale Microfactory: Design Fabrication Integration And Control., Ruoshi Zhang

Electronic Theses and Dissertations

Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling …


Porous Silica Nanotube Thin Films As Thermally Insulating Barrier Coatings, Derric B. Syme, Jason M. Lund, Brian D. Jensen, Robert C. Davis, Richard R. Vanfleet, Brian D. Iverson Mar 2020

Porous Silica Nanotube Thin Films As Thermally Insulating Barrier Coatings, Derric B. Syme, Jason M. Lund, Brian D. Jensen, Robert C. Davis, Richard R. Vanfleet, Brian D. Iverson

Faculty Publications

The fabrication and examination of a porous silica thin film, potentially for use as an insulating thin film, were investigated. A vertically aligned carbon nanotube (CNT) forest, created by chemical vapor deposition (CVD), was used as scaffolding to construct the porous film. Silicon was deposited on the CNT forest using low-pressure CVD (LPCVD) and then oxidized to remove the CNTs and convert the silicon to silica for electrical or thermal passivation (e.g., thermal barrier). Thermal conductivity was determined using a 1D heat-transfer analysis that equated radiative heat loss in a vacuum with conduction through the substrate and thin film stack. …


Experimental Characterization Of The Electrostatic Levitation Force In Mems Transducers, Meysam Daeichin, Ronald Miles, Shahrzad Towfighian Mar 2020

Experimental Characterization Of The Electrostatic Levitation Force In Mems Transducers, Meysam Daeichin, Ronald Miles, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

In this study, a two-step experimental procedure is described to determine the electrostatic levitation force in MEMS transducers. In these two steps, the microstructure is excited quasi-statically and dynamically and its response is used to derive the electrostatic force. The experimental results are obtained for a 1 by 1 plate that employs 112 levitation units. The experimentally obtained force is used in a lumped parameter model to find the microstructure response when it is subjected to different dynamical loads. The natural frequency and the damping ratios in the model are identified from the experimental results. The results show this procedure …


Lateral Pull-In Instability Of Electrostatic Mems Transducers Employing Repulsive Force, Meysam Daeichin, Ronald Miles, Shahrzad Towfighian Jan 2020

Lateral Pull-In Instability Of Electrostatic Mems Transducers Employing Repulsive Force, Meysam Daeichin, Ronald Miles, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

We report on the lateral pull-in in capacitive MEMS transducers that employ a repulsive electrostatic force. The moving element in this system undergoes motion in two dimensions. A two degree-offreedom mathematical model is developed to investigate the pull-in quantitatively. The nonlinear electrostatic force, which is a vector function of two spatial coordinates, is determined by calculating the potential energy of the system using a boundary element approach. The equilibrium points are found by numerically solving the nonlinear coupled static equations. A stability analysis reveals that depending on the values of the lateral and transverse stiness, the system undergoes dierent bifurcations …


Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta Jan 2020

Development Of A Mems Fabrication Process On Soi To Study High Strain In Transition-Metal Dichalcogenides, Edgar Acosta

Open Access Theses & Dissertations

Over the recent years there has been an increasing demand of better performing electronics. However, as the semiconductor industry keeps on improving and scaling the technology to the nanometer regime, the passive power density has overcome the overall power consumption of transistors. The inability to reduce the power alongside the scaling of transistors has led the scientific community in the search for alternatives or different solutions to overcome this power crisis. The use of two-dimensional Transition-Metal Dichalcogenides (TMDCS) and Micro-Electro-Mechanical System (MEMS) actuators, in conjunction, has been proposed as an alternative solution [1]. Recent studies of TMDCS have shown a …


Development Of Micro-Scale High Aspect Ratio Patterned Features With Electroless Nickel Plating, Lorli Smith Jan 2020

Development Of Micro-Scale High Aspect Ratio Patterned Features With Electroless Nickel Plating, Lorli Smith

Theses and Dissertations--Mechanical Engineering

This thesis describes a novel method designed to pattern high aspect ratio metallic microscale features using a modified photolithography and electroless nickel plating process. This method utilizes modified photolithography techniques to create a polymer mold that is used to control the location of metal deposition on substrate during electroless nickel plating. In order to generate high aspect ratio mold features, a multiple spin-step process was developed to deposit thick layers of SU-8 photoresist, and inclined lithography was also used to generate tapered sidewalls that could help aid mold removal after plating. Results from electroplating experiments were evaluated using a Zygo …


Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications, Zhiguo Zhao Jan 2020

Parylene Based Flexible Multifunctional Biomedical Probes And Their Applications, Zhiguo Zhao

Wayne State University Dissertations

MEMS (Micro Electro Mechanical System) based flexible devices have been studied for decades, and they are rapidly being incorporated into modern society in various forms such as flexible electronics and wearable devices. Especially in neuroscience, flexible interfaces provide tremendous possibilities and opportunities to produce reliable, scalable and biocompatible instruments for better exploring neurotransmission and neurological disorders. Of all the types of biomedical instruments such as electroencephalography (EEG) and electrocorticography (ECoG), MEMS-based needle-shape probes have been actively studied in recent years due to their better spatial resolution, selectivity, and sensitivity in chronical invasive physiology monitoring. In order to address the inherent …


Research On Dual-Antenna Gnss-Assisted Mins Navigation Method, Hailu Wang, Su Zhong, Liu Ning, Liu Hong, Guodong Fu Dec 2019

Research On Dual-Antenna Gnss-Assisted Mins Navigation Method, Hailu Wang, Su Zhong, Liu Ning, Liu Hong, Guodong Fu

Journal of System Simulation

Abstract: For the integrated navigation system of the single-antenna GNSS-assisted MEMS strap-down inertial navigation system (MINS), the heading angle divergence is invalid when the vehicle is stationary and linear motion, and the error is large. The method of the dual-antenna GNSS-assisted MINS integrated navigation based on EKF is proposed. The error state model is established, and the extended Kalman filter combined filter (EKF) algorithm is designsed for simulation verification. The driving test is carried out by comparing the high-precision SPAN-CPT. The results show that the yaw angle and pitch angle accuracy are 0.2 RMS, 0.3 RMS, which can be used …


Advanced Techniques For Carbon Nanotube Templated Microfabrication, Jason Matthew Lund Dec 2019

Advanced Techniques For Carbon Nanotube Templated Microfabrication, Jason Matthew Lund

Theses and Dissertations

Carbon nanotube templated microfabrication (CNT-M) is a term describing a grouping of processes where carbon nanotubes (CNTs) serve a structural role in the fabrication of a material or device. In its basic form, CNT-M is comprised of two steps: produce a template made from carbon nanotubes and infiltrate the porous template with an additional material. Vertically aligned carbon nanotube (VACNT) templates can be grown to heights ranging from microns to millimeters and lithographically patterned to a desired form. Deposition of an existing thin film material onto a CNT template will coat all template surfaces and can produce a near solid …


Pairing Electrostatic Levitation With Triboelectric Transduction For High-Performance Self-Powered Mems Sensors And Actuators, Mark Pallay, Alwathiqbellah I. Ibrahim, Ronald N. Miles, Shahrzad Towfighian Sep 2019

Pairing Electrostatic Levitation With Triboelectric Transduction For High-Performance Self-Powered Mems Sensors And Actuators, Mark Pallay, Alwathiqbellah I. Ibrahim, Ronald N. Miles, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

We demonstrate that an electrostatic levitation MEMS switch can be operated by applying mechanical pres- sure to a triboelectric generator. The toggling mechanism of the switch draws no current but requires a high actuating voltage, while the generator can supply a high voltage but only produces microwatts of power. The synergistic combination results in an entirely self-powered sensor and switch; the normally-closed MEMS switch can be toggled open by applying a threshold force to the generator without the need for any outside power or supplementary circuitry. A model of the MEMS switch and electrostatic force is validated with experimental data. …


Mems Gradiometers For Attitude Determination On Cubesats, Giovanna Marocco, Richard Middlemiss, Abhinav Prasad, S. Hild, J. Hough, S. Rowan, Giles D. Hammond, Andreas Noak, Douglas J. Paul, Andrew Strain, P. Anderson, Hazel Jeffrey Aug 2019

Mems Gradiometers For Attitude Determination On Cubesats, Giovanna Marocco, Richard Middlemiss, Abhinav Prasad, S. Hild, J. Hough, S. Rowan, Giles D. Hammond, Andreas Noak, Douglas J. Paul, Andrew Strain, P. Anderson, Hazel Jeffrey

Small Satellite Conference

This paper presents the design, fabrication and testing of a new high sensitivity gravity sensor for attitude determination in CubeSats. The project is a collaboration between the Institute for Gravitational Research at the University of Glasgow and ÅAC-Clyde. The gravitational gradiometer takes advantages of the technology of microelectromechanical systems (MEMS) and determines the attitude of the satellite by a differential gravity measurement, the principle at the base of gravitational gradiometry. The capacitive readout allows to measure the rotation of the MEMS gradiometer and consequently evaluate the angle changes of the CubeSat. The developed geometry consists of two symmetrical masses connected …


Evaluation Of Pixel-Scale Tunable Fabry-Perot Filters For Optical Imaging, Daniel L. Edwards Aug 2019

Evaluation Of Pixel-Scale Tunable Fabry-Perot Filters For Optical Imaging, Daniel L. Edwards

Theses

The Fabry-Perot interferometer (FPI) is a well-developed and widely used tool to control and measure wavelengths of light. In optical imaging applications, there is often a need for systems with compact, integrated, and widely tunable spectral filtering capabilities. We evaluate the performance of a novel tunable MEMS (Micro-Electro-Mechanical System) Fabry-Perot (FP) filter device intended to be monolithically integrated over each pixel of a focal plane array. This array of individually tunable FPIs have been designed to operate across the visible light spec-trum from 400-750 nm. This design can give rise to a new line of compact spectrometers with fewer moving …


Multiple Imu Sensor Fusion For Suas Navigation And Photogrammetry, Matthew Givens Aug 2019

Multiple Imu Sensor Fusion For Suas Navigation And Photogrammetry, Matthew Givens

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Inertial measurement units (IMUs) are devices that sense accelerations and angular rates in 3D so that vehicles and other devices can estimate their orientations, positions, and velocities. While traditionally large, heavy, and costly, using mechanical gyroscopes and stabilized platforms, the recent development of micro-electromechanical sensor (MEMS) IMUs that are small, light, and inexpensive has led to their adoption in many everyday systems such as cell phones, video game controllers, and commercial drones. MEMS IMUs, despite their advantages, have major drawbacks when it comes to accuracy and reliability. The idea of using more than one of these sensors in an array, …


Low-Cost, Water Pressure Sensing And Leakage Detection Using Micromachined Membranes, Farhana Anwar Jul 2019

Low-Cost, Water Pressure Sensing And Leakage Detection Using Micromachined Membranes, Farhana Anwar

Master's Theses (2009 -)

This work presents the only known SOI membrane approach, using Microelectromechanical systems (MEMS) fabrication techniques, to address viable water leakage sensing requirements at low cost. In this research, membrane thickness and diameter are used in concert to target specific stiffness values that will result in targeted operational pressure ranges of approximately 0-120 psi. A MEMS membrane device constructed using silicon-on-insulator (SOI) wafers, has been tested and packaged for the water environment. MEMS membrane arrays will be used to determine operational pressure range by bursting.Two applications of these SOI membranes in aqueous environment are investigated in this research. The first …


Secondary Resonances Of Electrostatically Actuated Mems Cantilevers, Christopher I. Reyes May 2019

Secondary Resonances Of Electrostatically Actuated Mems Cantilevers, Christopher I. Reyes

Theses and Dissertations

In this work the behavior of micro-electromechanical (MEMS) cantilever resonators is investigated. The cantilever resonators are electrostatically actuated with hard AC voltage resulting in nine distinct resonances cases including super and subharmonic resonances. The amplitude frequency and amplitude voltage bifurcation diagrams are obtained for each of the nine resonance cases. Reduced order models (ROMs) are developed to include one and two modes of vibration. Three different methods are used to solve the ROMs namely 1) the method of multiple scales (MMS), which is a perturbation method used for one mode of vibration, 2) the homotopy analysis method (HAM), which is …


Liquid Flowmeter Using Thermal Measurement; Design And Application, Woojae Chung Apr 2019

Liquid Flowmeter Using Thermal Measurement; Design And Application, Woojae Chung

Master's Theses (2009 -)

This thesis presents flowmeter devices which can measure flowrate, pressure and temperature offlowing liquid samples using thermal measurement method. Typical thermal mass flowmeter usesthermal properties of materials to obtain flow features only for gases. We designed and fabricatedflowmeter devices with various functionalities such as: measuring properties of flowing liquid andidentifying the type of liquid samples.Thermal measurement methods using temperature sensor is a key of our flowmeter’s workingprinciple. The thermal mass flowmeter consists of a glass capillary, a tungsten wire heater, and aresistance temperature detector (RTD) sensor. The heater and sensors are integrated on …


Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani Feb 2019

Development Of A Counter-Flow Thermal Gradient Microfluidic Device, Shayan Davani

Doctoral Dissertations

This work presents a novel counter-flow design for thermal stabilization of microfluidic thermal reactors. In these reactors, precise control of temperature of the liquid sample is achieved by moving the liquid sample through the thermal zones established ideally through the conduction in the solid material of the device. The goal here is to establish a linear thermal distribution when there is no flow and to minimize the temperature change at flow condition. External convection as well as internal flowinduced effects influence the prescribed thermal distribution. The counter-flow thermal gradient device developed in this study is capable of both stabilizing the …


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further included in …


A Tunable Electrostatic Mems Pressure Switch, Mark Pallay, Ronald N. Miles, Shahrzad Towfighian Jan 2019

A Tunable Electrostatic Mems Pressure Switch, Mark Pallay, Ronald N. Miles, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

We demonstrate a tunable air pressure switch. The switch detects when the ambient pressure drops below a threshold value and automatically triggers without the need for any computational overhead to read the pressure or trigger the switch. The switch exploits the significant fluid interaction of a MEMS beam undergoing a large oscillation from electrostatic levitation to detect changes in ambient pressure. If the oscillation amplitude near the resonant frequency is above a threshold level, dynamic pullin is triggered and the switch is closed. The pressure at which the switch closes can be tuned by adjusting the voltage applied to the …


Development Of A Sensing System For Underground Optic Fiber Cable Conduit Mapping, Sherif Bakr Jan 2019

Development Of A Sensing System For Underground Optic Fiber Cable Conduit Mapping, Sherif Bakr

All Graduate Theses, Dissertations, and Other Capstone Projects

The motivation of this research is to obtain an accurate three-dimensional (3D) layout of an underground conduit, which may be beneficial to optic fiber cable installers and engineers. A newly designed algorithm for 3D position tracking with the help of an inertial sensor and an encoder has been developed. Two types of representations (Euler angle and Quaternion) for orientation and rotation are also introduced, followed by several data pre-processing procedures. A sensing fusion method is utilized to overcome the accumulated errors introduced by the sensor drifting. Considering the application of 3D underground duct mapping in this research, a sensing system …


Conductivity Modulation In Strained 2d Transition- Metal- Dichalcogenides Via Micro- Electro- Mechanical Actuation, Aldo Ivan Vidaña Jan 2019

Conductivity Modulation In Strained 2d Transition- Metal- Dichalcogenides Via Micro- Electro- Mechanical Actuation, Aldo Ivan Vidaña

Open Access Theses & Dissertations

In this thesis, strain-induced conductivity modulation in bi-layer molybdenum disulfide (MoS2) flakes is experimentally investigated and modeled. Uniaxial tensile strain in the MoS2 flakes is achieved using a micro-electro-mechanical (MEM) actuator. Conductivity ratios up to 400 are demonstrated. Theoretical predictions of conductivity versus applied voltage in the MEMS-MoS2 device match experimental data reasonably well using only the effective width of the TMDC flakes as the sole fitting parameter. The amount of strain induced in the MoS2 flakes was determined to be as high as 2.7% for one flake using the model fitted to the experiment data. The switching energy required …


A Miniaturized Chemical Vapor Detector Using Mems Flexible Platform, Haleh Nazemi Jan 2019

A Miniaturized Chemical Vapor Detector Using Mems Flexible Platform, Haleh Nazemi

Electronic Theses and Dissertations

According to the Canadian Cancer Society, lung cancer is the one of the leading causes of cancer death. It has been shown that cancer survival chance depends on factors including the availability of early detection and diagnostic tools such as miniaturized and sensitive gas sensor. This can detect the released volatiles in addition to be implementable in portable electronics, which decisively improves the patient’s survival rate. Therefore, in this thesis and in an effort to develop high-sensitive and miniaturized gas sensor, a microelectromechanical systems (MEMS) platform is utilized. In this work, a sensitive gas sensor is proposed by employing capacitive …


An Implantable Low Pressure, Low Drift, Dual Biopressure Sensor And In-Vivo Calibration Methods Thereof, Chad Eric Seaver Dec 2018

An Implantable Low Pressure, Low Drift, Dual Biopressure Sensor And In-Vivo Calibration Methods Thereof, Chad Eric Seaver

Doctoral Dissertations

The human body’s intracranial pressure (ICP) is a critical component in sustaining healthy blood flow to the brain while allowing adequate volume for brain tissue within the rigid structures of the cranium. Disruptions in the body’s autoregulation of intracranial pressure are often caused by hemorrhage, tumors, edema, or excess cerebral spinal fluid resulting in treatments that are estimated to globally cost up to approximately five billion dollars annually. A critical element in the contemporary management of acute head injury, intracranial hemorrhage, stroke, or other conditions resulting in intracranial hypertension, is the real-time monitoring of ICP. Currently, such mainstream clinical monitoring …


Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra Dec 2018

Exploration Of Radiation Damage Mechanism In Mems Devices., Pranoy Deb Shuvra

Electronic Theses and Dissertations

We explored UV, X-ray and proton radiation damage mechanisms in MEMS resonators. T-shaped MEMS resonators of different dimensions were used to investigate the effect of radiation. Radiation damage is observed in the form of resistance and resonance frequency shift of the device. The resistance change indicates a change in free carrier concentration and mobility, while the resonance frequency change indicates a change in mass and/or elastic constant. For 255nm UV radiation, we observed a persistent photoconductivity that lasts for about 60 hours after radiation is turned off. The resonance frequency also decreases 40-90 ppm during irradiation and slowly recovers at …


Mems Variable Area Capacitor For Room Temperature Electrometry, George C. Underwood, Tod V. Laurvick Nov 2018

Mems Variable Area Capacitor For Room Temperature Electrometry, George C. Underwood, Tod V. Laurvick

Faculty Publications

This paper introduces a new way to detect charge using MEMS variable capacitors for extremely sensitive, room temperature electrometry. It is largely based on the electrometers introduced by Riehl et al. [1] except variable capacitance is created by a changing area, not a changing gap. The new scheme will improve MEMS electrometers by eliminating the effects of squeeze-film damping and by theoretically increasing the maximum charge resolution by 70%. The charge conversion gain (the increase in output voltage per input unit charge) for this system is derived. The result show good agreement with MATLAB calculations.


In Situ Investigation Of Thermally Activated Processes Using Mems-Based Devices: Practical Challenges & Applications, Sriram Vijayan Nov 2018

In Situ Investigation Of Thermally Activated Processes Using Mems-Based Devices: Practical Challenges & Applications, Sriram Vijayan

Doctoral Dissertations

In situ heating holders offer the possibility of studying thermally activated processes by performing real time, high temperature experiments inside the transmission electron microscope. The poor thermal stability of traditional furnace-type heating holders limits their use to a narrow range of materials and processes. Modern micro electro mechanical system (MEMS) based heating holders have significantly improved the ability to perform such experiments and have led to a revival in the field of in situ TEM. The excellent thermal stability of the MEMS devices allows us to carry out controlled heating and cooling experiments on both particulate and bulk samples at …