Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

2012

Brigham Young University

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Design And Testing Of A Biological Microelectromechanical System For The Injection Of Thousands Of Cells Simultaneously, Gregory Herlin Teichert Jul 2012

Design And Testing Of A Biological Microelectromechanical System For The Injection Of Thousands Of Cells Simultaneously, Gregory Herlin Teichert

Theses and Dissertations

The ability to inject DNA and other foreign particles into cells, both germ cells (e.g. to produce transgenic animals) and somatic cells (e.g. for gene therapy), is a powerful tool in genetic research. Nanoinjection is a method of DNA delivery that combines mechanical and electrical methods. It has proven to have higher cell viability than traditional microinjection, resulting in higher integration per injected embryo. The nanoinjection process can be performed on thousands of cells simultaneously using an array of microneedles that is inserted into a monolayer of cells. This thesis describes the needle array design requirements and the fabrication process …


Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio May 2012

Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio

Theses and Dissertations

This work explores the use of carbon-infiltrated carbon nanotube (CI-CNT) forests as a material for fabricating compliant MEMS devices. The impacts of iron catalyst layer thickness and carbon infiltration time are examined. An iron layer of 7nm or 10nm with an infiltration time of 30 minutes produces CI-CNT best suited for compliant applications. Average maximum strains of 2% and 2.48% were observed for these parameters. The corresponding elastic moduli were 5.4 GPa and 4.1 GPa, respectively. A direct comparison of similar geometry suggested CI-CNT is 80% more flexible than single-crystal silicon. A torsional testing procedure provided an initial shear modulus …