Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Entire DC Network

Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh Jun 2021

Feasibility Study Of Radio Frequency Microelectromechanical Filters For Space Operation, Karanvir Singh

Theses and Dissertations

Piezoelectric contour mode resonator technology has the unique advantage of combining low motional resistance with the ability to define multiple frequencies on the same substrate. Contour mode resonators can be mechanically coupled together to form robust band-pass filters for the next generation of GPS satellites with extreme size reduction compared to electrically coupled filters. Piezoelectric zinc oxide (ZnO) contour mode resonators have the potential for monolithic integration with current ZnO transistor further reducing size, power consumption, and cost of filter modules. Barium strontium titanate (BST) contour mode resonators have incredible frequency tunability due to the fundamental nature of the thin …


Development Of Novel Compound Controllers To Reduce Chattering Of Sliding Mode Control, Mehran Rahmani May 2021

Development Of Novel Compound Controllers To Reduce Chattering Of Sliding Mode Control, Mehran Rahmani

Theses and Dissertations

The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and …


Modeling And Effects Of Non-Homogeneous Infiltration On Material Properties Of Carbon-Infiltrated Carbon Nanotube Forests, Daniel Owens Snow Aug 2020

Modeling And Effects Of Non-Homogeneous Infiltration On Material Properties Of Carbon-Infiltrated Carbon Nanotube Forests, Daniel Owens Snow

Theses and Dissertations

This work investigates the material properties and production parameters of carbon infiltrated carbon nanotube structures (CI-CNT's). The impact of non homogeneous infiltration and the porosity of cross section regions, coupled with changes in designed geometry, in this case beam width, on the density and modulus of elasticity are compared. Three potential geometric models of beam cross section are proposed and evaluated. 3-point bending, SEM images, and numerical optimization are used to assess the validity of each model and the implications they have for future CI-CNT material applications. Carbon capping near exterior beam surfaces is observed and determined to be a …


Advanced Techniques For Carbon Nanotube Templated Microfabrication, Jason Matthew Lund Dec 2019

Advanced Techniques For Carbon Nanotube Templated Microfabrication, Jason Matthew Lund

Theses and Dissertations

Carbon nanotube templated microfabrication (CNT-M) is a term describing a grouping of processes where carbon nanotubes (CNTs) serve a structural role in the fabrication of a material or device. In its basic form, CNT-M is comprised of two steps: produce a template made from carbon nanotubes and infiltrate the porous template with an additional material. Vertically aligned carbon nanotube (VACNT) templates can be grown to heights ranging from microns to millimeters and lithographically patterned to a desired form. Deposition of an existing thin film material onto a CNT template will coat all template surfaces and can produce a near solid …


Secondary Resonances Of Electrostatically Actuated Mems Cantilevers, Christopher I. Reyes May 2019

Secondary Resonances Of Electrostatically Actuated Mems Cantilevers, Christopher I. Reyes

Theses and Dissertations

In this work the behavior of micro-electromechanical (MEMS) cantilever resonators is investigated. The cantilever resonators are electrostatically actuated with hard AC voltage resulting in nine distinct resonances cases including super and subharmonic resonances. The amplitude frequency and amplitude voltage bifurcation diagrams are obtained for each of the nine resonance cases. Reduced order models (ROMs) are developed to include one and two modes of vibration. Three different methods are used to solve the ROMs namely 1) the method of multiple scales (MMS), which is a perturbation method used for one mode of vibration, 2) the homotopy analysis method (HAM), which is …


Finite Element Analysis Simulations Of Micro And Nano-Electromechanical Sensors For Design Optimization, Nicholas Frank Deroller Dec 2014

Finite Element Analysis Simulations Of Micro And Nano-Electromechanical Sensors For Design Optimization, Nicholas Frank Deroller

Theses and Dissertations

Micro and Nano-electromechanical sensors (MEMS and NEMS) provide a means of actively sensing minute changes in the surrounding environment. Small changes in temperature, momentum, and strain may be sensed in passive modes while greater sensing possibilities exist in active modes. Theoretical femto-gram resolution mass detection and heated element sensing methods may be used while volatile organic compound (VOC) sensing may be achieved when combined with a functionalization layer or device heating. These devices offer a great reduction in cost and offer increased mobility by allowing a "lab-on-chip" solution for the prospective user while also greatly reducing the amount of energy …


Piezotransistive Iii-V Nitride Microcantilever Based Mems/Nems Sensor For Photoacoustic Spectroscopy Of Chemicals, Abdul Hafiz Ibne Talukdar Dec 2014

Piezotransistive Iii-V Nitride Microcantilever Based Mems/Nems Sensor For Photoacoustic Spectroscopy Of Chemicals, Abdul Hafiz Ibne Talukdar

Theses and Dissertations

Microcantilevers are highly attractive as transducers for detecting chemicals, explosives, and biological molecules due to their high sensitivity, micro-scale dimensions, and low power consumption. Though optical transduction of the mechanical movement of the microcantilevers into an electrical signal is widely practiced, there is a continuous thrust to develop alternative transduction methods that are more conducive to the development of compact miniaturized sensors. Piezoelectric and piezoresistive transduction methods are two of the most popular ones that have been utilized to develop miniaturized sensor systems. Piezoelectric cantilevers, which are commonly made of PZT film, have demonstrated very high sensitivity; however, they suffer …


Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen Mar 2013

Microfabrication Processes And Advancements In Planar Electrode Ion Traps As Mass Spectrometers, Brett Jacob Hansen

Theses and Dissertations

This dissertation presents advances in the development of planar electrode ion traps. An ion trap is a device that can be used in mass analysis applications. Electrode surfaces create an electric field profile that trap ionized molecules of an analyte. The electric fields can then be manipulated to mass-selectively eject ions out of the trap into a detector. The resulting data can be used to analyze molecular structure and composition of an unknown compound. Conventional ion traps require machined electrode surfaces to form the electric trapping field. This class of electrode presents significant obstacles when attempting to miniaturize ion traps …


High Performance 3-Folded Symmetric Decoupled Mems Gyroscopes, Hani Hisham Tawfik Feb 2013

High Performance 3-Folded Symmetric Decoupled Mems Gyroscopes, Hani Hisham Tawfik

Theses and Dissertations

This thesis reports, for the first time, on a novel design and architecture for realizing inertial grade gyroscope based on Micro-Electro-Mechanical Systems (MEMS) technology. The proposed device is suitable for high-precision Inertial Navigation Systems (INS). The new design has been investigated analytically and numerically by means of Finite Element Modeling (FEM) of the shapes, resonance frequencies and decoupling of the natural drive and sense modes of the various implementations. Also, famous phenomena known as spring softening and spring hardening are studied. Their effect on the gyroscope operation is modeled numerically in Matlab/Simulink platform. This latter model is used to predict …


Toward Sophisticated Controls Of Two-Phase Transport At Micro/Nano-Scale, Fanghao Yang Jan 2013

Toward Sophisticated Controls Of Two-Phase Transport At Micro/Nano-Scale, Fanghao Yang

Theses and Dissertations

Through the use of latent heat evaporating, flow boiling in microchannels offers new opportunities to enable high efficient heat and mass transport for a wide range of emerging applications such as high power electric/electronic/optical cooling, compact heat exchangers and reactors. However, flow boiling in microchannels is hampered by several severe constraints such as bubble confinement (e.g., slug flow), viscosity and surface tension force-dominated flows, which result in unpredictable flow pattern transitions and tend to induce severe flow boiling instabilities (i.e. low-frequency and large magnitude flows) and suppress evaporation and convection.

In this dissertation, three novel micro/nanoscale thermo-fluidic control methodologies were …


Design And Testing Of A Biological Microelectromechanical System For The Injection Of Thousands Of Cells Simultaneously, Gregory Herlin Teichert Jul 2012

Design And Testing Of A Biological Microelectromechanical System For The Injection Of Thousands Of Cells Simultaneously, Gregory Herlin Teichert

Theses and Dissertations

The ability to inject DNA and other foreign particles into cells, both germ cells (e.g. to produce transgenic animals) and somatic cells (e.g. for gene therapy), is a powerful tool in genetic research. Nanoinjection is a method of DNA delivery that combines mechanical and electrical methods. It has proven to have higher cell viability than traditional microinjection, resulting in higher integration per injected embryo. The nanoinjection process can be performed on thousands of cells simultaneously using an array of microneedles that is inserted into a monolayer of cells. This thesis describes the needle array design requirements and the fabrication process …


Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio May 2012

Mechanical Properties And Mems Applications Of Carbon-Infiltrated Carbon Nanotube Forests, Walter C. Fazio

Theses and Dissertations

This work explores the use of carbon-infiltrated carbon nanotube (CI-CNT) forests as a material for fabricating compliant MEMS devices. The impacts of iron catalyst layer thickness and carbon infiltration time are examined. An iron layer of 7nm or 10nm with an infiltration time of 30 minutes produces CI-CNT best suited for compliant applications. Average maximum strains of 2% and 2.48% were observed for these parameters. The corresponding elastic moduli were 5.4 GPa and 4.1 GPa, respectively. A direct comparison of similar geometry suggested CI-CNT is 80% more flexible than single-crystal silicon. A torsional testing procedure provided an initial shear modulus …


Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten Jun 2011

Devices And Methods For Electro-Physical Transport Of Dna Across Cell Membranes, Quentin Theodore Aten

Theses and Dissertations

A novel method for charged macromolecule delivery, called nanoinjection, has been developed at Brigham Young University. Nanoinjection combines micro-fabrication technology, mechanism design, and nano-scale electrical phenomenon to transport exogenous DNA across cell membranes on a nano-featured lance. DNA is electrically accumulated on the lance, precision movements of microelectromechanical systems (MEMS) physically insert the lance into cell, and DNA is electrically released from the lance into the cell. Penetration into the cell is achieved through a two-phase, self-reconfiguring metamorphic mechanism. The surface-micromachined, metamorphic nanoinjector mechanism elevates the lance above the fabrication substrate, then translates in-plane at a constant height as the …


Modeling, Design, And Testing Of An Underwater Microactuation System Using A Standard Mems Foundry Process, Gregory L. Holst Apr 2011

Modeling, Design, And Testing Of An Underwater Microactuation System Using A Standard Mems Foundry Process, Gregory L. Holst

Theses and Dissertations

This work presents the modeling, design, and testing of an underwater microactuation system. It is composed of several thermomechanical in-plane microactuators (TIM) integrated with a ratchet system to provide long displacements and high forces to underwater microelectromechanical systems (MEMS). It is capable of actuating a 200µN load 110µm. It is a two-layer silicon MEMS device fabricated with a MEMS fabrication process, PolyMUMPS. This work also shows the development of an elliptic integral model to analyze the compliant fixed-guided beams in the TIM and gives new insight into the buckling behavior, reaction forces, and displacement of the beams. The derivation, verification, …


Modeling And Testing Of Dna Motion For Nanoinjection, Regis Agenor David Dec 2010

Modeling And Testing Of Dna Motion For Nanoinjection, Regis Agenor David

Theses and Dissertations

A new technique, called nanoinjection, is being developed to insert foreign DNA into a living cell. Such DNA transfection is commonly used to create transgenic organisms vital to the study of genetics, immunology, and many other biological sciences. In nanoinjection, DNA, which has a net negative charge, is electrically attracted to a micromachined lance. The lance then pierces the cell membranes, and the voltage on the lance is reversed, repelling the DNA into the cell. It is shown that DNA motion is strongly correlated to ion transport through a process called electrophoresis. Gel electrophoresis is used to move DNA using …


Piezoresistive Models For Polysilicon With Bending Or Torsional Loads, Gerrit T. Larsen Aug 2009

Piezoresistive Models For Polysilicon With Bending Or Torsional Loads, Gerrit T. Larsen

Theses and Dissertations

This thesis presents new models for determining piezoresistive response in long, thin polysilicon beams with either axial and bending moment inducing loads or torsional loads. Microelectromechanical (MEMS) test devices and calibration methods for finding the piezoresistive coefficients are also presented for both loading conditions. For axial and bending moment inducing loads, if the piezoresistive coefficients are known, the Improved Piezoresistive Flexure Model (IPFM) is used to find the new resistance of a beam under stress. The IPFM first discretizes the beam into small volumes represented by resistors. The stress that each of these volumes experiences is calculated, and the stress …


Design And Testing Of A Pumpless Microelectromechanical System Nanoinjector, Quentin Theodore Aten Nov 2008

Design And Testing Of A Pumpless Microelectromechanical System Nanoinjector, Quentin Theodore Aten

Theses and Dissertations

A deeper understanding of human development and disease is made possible partly through the study of genetically modified model organisms, such as the common mouse (Mus musculus). By genetically modifying such model organisms, scientists can activate, deactivate, or highlight particular characteristics. A genetically modified animal is generated by adding exogenous (foreign) genetic material to one or more embryonic cells at their earliest stages of development. Frequently, this exogenous genetic material consists of specially engineered DNA, which is introduced into a fertilized egg cell (zygote). When successfully introduced into the zygote, the exogenous DNA will be incorporated into the …


Multi-Physics Modeling And Calibration For Self-Sensing Of Thermomechanical In-Plane Microactuators, Kendall B. Teichert Jul 2008

Multi-Physics Modeling And Calibration For Self-Sensing Of Thermomechanical In-Plane Microactuators, Kendall B. Teichert

Theses and Dissertations

As technology advances and engineering capabilities improve, more research has focused on microscopic possibilities. Microelectromechanical systems (MEMS) is one area that has received much attention recently. Within MEMS much research has focused on sensing and actuation. This thesis presents work on a particular actuator of interest, the thermomechanical in-plane microactuator (TIM). Recent work has shown the possibility of a novel approach of sensing mechanical outputs of the TIM without ancillary sensors. This sensing approach exploits the piezoresistive property of silicon. However, to implement this approach a full model of the TIM would need to be obtained to describe the physics …


Characterizing The Three-Dimensional Behavior Of Bistable Micromechanisms, Brian B. Cherry Feb 2008

Characterizing The Three-Dimensional Behavior Of Bistable Micromechanisms, Brian B. Cherry

Theses and Dissertations

Compliant bistable micromechanisms have been proposed for use in applications such as switches, relays, shutters, and sensing arrays. Unpublished laboratory testing suggests that off-axis forces may affect the bistable nature of fully compliant bistable micromechanisms (FCBMs). The actuation forces required to snap the FCBM from one stable equilibrium position to another can be altered if the off-axis forces are applied to the mechanism during transition between stable positions. Understanding the three-dimensional characteristics of these mechanisms and the effect of eccentric loading conditions would be helpful in design and analysis of FCBMs. Two 3-D FEA models were developed for analysis and …


Integrated Piezoresistive Sensing For Feedback Control Of Compliant Mems, Robert K. Messenger Oct 2007

Integrated Piezoresistive Sensing For Feedback Control Of Compliant Mems, Robert K. Messenger

Theses and Dissertations

Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structures flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures' deflection into an electrical signal. This dissertation addresses three topics …


Toward A Flying Mems Robot, Nathan E. Glauvitz Mar 2007

Toward A Flying Mems Robot, Nathan E. Glauvitz

Theses and Dissertations

The work in this thesis includes the design, modeling, and testing of motors and rotor blades to be used on a millimeter-scale helicopter style flying micro air vehicle (MAV). Three different types of motor designs were developed and tested, which included circular scratch drives, electrostatic motors, and comb drive resonators. Six different rotor designs were tested; five used residual stress while one design used photoresist to act as a hinge to achieve rotor blade deflection. Two key parameters of performance were used to evaluate the motor and rotor blade designs: the frequency of motor rotation and the angle of deflection …


The Piezoresistive Effect In Microflexures, Gary K. Johns Dec 2006

The Piezoresistive Effect In Microflexures, Gary K. Johns

Theses and Dissertations

The objective of this research is to present a new model for predicting the piezoresistive effect in microflexures experiencing bending stresses. A linear model describing piezoresistivity exists for members in pure tension and compression. Extensions of this model to more complex loading conditions do not match experimental results. An accurate model of piezoresistivity in complex loading conditions would expand the design possibilities of piezoresistive devices. A new model to predict piezoresistive effects in tension, compression, and more complex loading conditions is proposed. The focus of this research is to verify a unidirectional form of this proposed model for microflexures in …


Design Of Piezoresistive Mems Force And Displacement Sensors, Tyler Lane Waterfall Sep 2006

Design Of Piezoresistive Mems Force And Displacement Sensors, Tyler Lane Waterfall

Theses and Dissertations

MEMS (MicroElectroMechanical Systems) sensors are used in acceleration, flow, pressure and force sensing applications on the micro and macro levels. Much research has focused on improving sensor precision, range, reliability, and ease of manufacture and operation. One exciting possibility for improving the capability of micro sensors lies in exploiting the piezoresistive properties of silicon, the material of choice in many MEMS fabrication processes. Piezoresistivity—the change of electrical resistance due to an applied strain—is a valuable material property of silicon due to its potential for high signal output and on-chip and feedback-control possibilities. However, successful design of piezoresistive micro sensors requires …


Piezoresistive Sensing Of Bistable Micro Mechansim State, Jeffrey K. Anderson Nov 2005

Piezoresistive Sensing Of Bistable Micro Mechansim State, Jeffrey K. Anderson

Theses and Dissertations

The objective of this work is to demonstrate the feasibility of on-chip sensing of bistable mechanism state using the piezoresistive properties of polysilicon, thus eliminating the need for electrical contacts. Changes in position are detected by observing changes in resistance across the mechanism. Sensing the state of bistable mechanisms is critical in their various applications. The research in this thesis advances the modeling techniques of MEMS devices which use piezoresistivity for position sensing. A fully compliant bistable micro mechanism was designed, fabricated, and tested to demonstrate the feasibility of this sensing technique. Testing results from two fabrication processes, Fairchild's SUMMiT …


Ortho-Planar Mechanisms For Microelectromechanical Systems, Craig P. Lusk Jul 2005

Ortho-Planar Mechanisms For Microelectromechanical Systems, Craig P. Lusk

Theses and Dissertations

A method for representing the design space of ortho-planar mechanisms has been developed. The method is based on the Theorem of Equality of Orientation Set Measures (TEOSM) which allows mechanisms to be represented by points in an abstract space. The method is first developed for single loop planar folded mechanisms with revolute joints, and later extended to mechanisms with prismatic joints and to spherical folded mechanisms. Functions which assign a value to each point in design space can be used to describe classes of mechanisms and evaluate their utility for MEMS design. Additionally, this work introduces the use of spherical …


Electrothermomechanical Modeling Of A Surface-Micromachined Linear Displacement Microactuator, Christian D. Lott Mar 2005

Electrothermomechanical Modeling Of A Surface-Micromachined Linear Displacement Microactuator, Christian D. Lott

Theses and Dissertations

The electrothermomechanical characteristics of an electrically-heated polycrystallinesilicon microactuator are explored. Using finite-difference techniques, an electrothermal model based on the balance of heat dissipation and heat losses is developed. For accurate simulation, the relevant temperature dependent properties from the microactuator material are included in the model. The electrothermal model accurately predicts the steady-state power required to hold position, and the energy consumed during the thermal transient. Thermomechanical models use the predictions of temperature from the electrothermal solution to calculate displacement and force from pseudo-rigid-body approximations and commercial finite-element code. The models are verified by comparing experimental data to simulation results of …


Dual-Stage Thermally Actuated Surface-Micromachined Nanopositioners, Neal B. Hubbard Mar 2005

Dual-Stage Thermally Actuated Surface-Micromachined Nanopositioners, Neal B. Hubbard

Theses and Dissertations

Nanopositioners have been developed with electrostatic, piezoelectric, magnetic, thermal, and electrochemical actuators. They move with as many as six degrees of freedom; some are composed of multiple stages that stack together. Both macro-scale and micro-scale nanopositioners have been fabricated. A summary of recent research in micropositioning and nanopositioning is presented to set the background for this work. This research project demonstrates that a dual-stage nanopositioner can be created with microelectromechanical systems technology such that the two stages are integrated on a single silicon chip. A nanopositioner is presented that has two stages, one for coarse motion and one for fine …


Simulation-Based Design Under Uncertainty For Compliant Microelectromechanical Systems, Jonathan W. Wittwer Mar 2005

Simulation-Based Design Under Uncertainty For Compliant Microelectromechanical Systems, Jonathan W. Wittwer

Theses and Dissertations

The high cost of experimentation and product development in the field of microelectromechanical systems (MEMS) has led to a greater emphasis on simulation-based design for increasing first-pass design success and reliability. The use of compliant or flexible mechanisms can help eliminate friction, wear, and backlash, but compliant MEMS are sensitive to variations in material properties and geometry. This dissertation proposes approaches for design stage uncertainty analysis, model validation, and robust optimization of nonlinear compliant MEMS to account for critical process uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness. Methods for simulating and mitigating the effects of non-idealities …


Fully Compliant Tensural Bistable Mechanisms (Ftbm) With On-Chip Thermal Actuation, Daniel L. Wilcox Jul 2004

Fully Compliant Tensural Bistable Mechanisms (Ftbm) With On-Chip Thermal Actuation, Daniel L. Wilcox

Theses and Dissertations

The Fully compliant Tensural Bistable Mechanism (FTBM) class is introduced. The class consists of fully compliant linear bistable mechanisms that achieve much of their displacement and bistable behavior through tension loading of compliant segments. Multiple topologies of designs arising from the FTBM class were designed using a finite element analysis (FEA) model with optimization. In a coupled design approach, thermal actuators were optimized to the force and displacement requirements of the bistable mech-anisms, and selected FTBM devices were combined in switching systems with the result-ing Thermomechanical In-plane Microactuators (TIMs) and Amplified Thermomechanical In-plane Microactuators (ATIMs). Successful on-chip actuation was demonstrated. …


Modeling And Control Of Surface Micromachined Thermal Actuators, Robert K. Messenger May 2004

Modeling And Control Of Surface Micromachined Thermal Actuators, Robert K. Messenger

Theses and Dissertations

A model that accurately describes the transient and steady-state response of thermal microactuators is desirable to provide guidance for design and operation. However, modeling the full response of thermal actuators is challenging due to the temperature-dependent material properties and nonlinear deformations that must be included to obtain accurate results. To meet these challenges a three-dimensional multi-physics nonlinear finite-element model was developed using commercial code. The Thermomechanical Inplane Microactuator (TIM) was chosen as a candidate application to validate the model. TIMs were fabricated using the SUMMiT V™ process and their response was measured using a high-speed camera. The TIMs were modeled …