Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Localized Blood Occlusion Generation In An In-Vitro Circulatory Catheter System, Ryan D. Harris, Qi Yang, Hyowon Lee Aug 2017

Localized Blood Occlusion Generation In An In-Vitro Circulatory Catheter System, Ryan D. Harris, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a debilitating neurological disorder that involves the accumulation of cerebrospinal fluid in a ventricle of the brain. The implantation of a catheter commonly treats hydrocephalus with drainage. These catheters have a short lifespan due to obstruction from biological materials. Shunt systems have an extremely high failure rate of more than 40% failed within 1 year and up to 85% failed within 10 years. Previously, polymer-based flexible implantable magnetic micro-actuators were developed to clean up the catheter by mechanical vibration. We have demonstrated clearing of bacteria attachment and are proceeding to examine clearing effects on larger clotting materials, such …


Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee Aug 2016

Mechanical Reliability Of Implantable Polyimide-Based Magnetic Microactuators For Biofouling Removal, Christian G. Figueroa-Espada, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a neurological disorder that typically requires a long-term implantation of a shunt system to manage its symptoms. These shunt systems are notorious for their extremely high failure rate. More than 40% of all implanted shunt systems fail within the first year of implantation. On average, 85% of all hydrocephalus patients with shunt systems undergo at least two shunt-revision surgeries within 10 years of implantation. A large portion of this high failure rate can be attributed to biofouling-related obstructions and infections. Previously, we developed flexible polyimide-based magnetic microactuators to remove obstructions formed on hydrocephalus shunts. To test the long-term …


Securemems: Selective Deposition Of Energetic Materials, Trevor J. Fleck, Josiah R. Thomas, Lillian F. Miles, Allison K. Murray, Zane A. Roberts, Raghav Ramachandran, I Emre Gunduz, Steven F. Son, George T. Chiu, Jeffrey F. Rhoads Aug 2015

Securemems: Selective Deposition Of Energetic Materials, Trevor J. Fleck, Josiah R. Thomas, Lillian F. Miles, Allison K. Murray, Zane A. Roberts, Raghav Ramachandran, I Emre Gunduz, Steven F. Son, George T. Chiu, Jeffrey F. Rhoads

The Summer Undergraduate Research Fellowship (SURF) Symposium

There exists a pressing operational need to secure and control access to high-valued electromechanical systems, and in some cases render them inoperable. Developing a reliable method for depositing energetic materials will allow for the near-seamless integration of electromechanical systems and energetic material, and, in turn, provide the pathway for security and selective destruction that is needed. In this work, piezoelectric inkjet printing was used to selectively deposit energetic materials. Nanothermites, comprising of nanoscale aluminum and nanoscale copper oxide suspended in dimethyl-formamide (DMF), were printed onto silicon wafers, which enabled both thermal and thrust measurements of the decomposing energetic material. Various …


Prism - Materials Simulation Tool, Ryan Widjaja, Marisol Koslowski Oct 2013

Prism - Materials Simulation Tool, Ryan Widjaja, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

MEMS (Micro-electromechanical System) is a combined electrical and mechanical nano-scaled device with rapidly growing applications. We have developed a contacting radio frequency capacitive MEMS that is commonly used as capacitive switches and contact actuators in PRISM (Prediction of Reliability, Integrity and Survivability of Microsystems) lab at Purdue University. Our research team has focused on creating a simulation of MEMS’s survivability towards crazing and cracking. Our particular objective in this project is to create a tool that can help users perform complex quantitative calculations regarding the properties of different materials. This tool will generate various plots visualizing the properties, such as …


Simulation Of Beam Dynamics For Mems Devices, Saagar Unadkat, Devon Parkos, Alina Alexeenko Oct 2013

Simulation Of Beam Dynamics For Mems Devices, Saagar Unadkat, Devon Parkos, Alina Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microelectromechanical Systems (MEMS) are systems made up of small components to complete a bigger goal. Some of these components can be modeled as small beams, which are anchored at both sides, or as cantilever beams. These beams can be subjected to various forces such as Knudsen Forces, Electrostatic Forces as well as G-loading. These devices have many applications such as sensors, actuators and even as accelerometers for airbags, smart phones and game controllers. Modeling the dynamics of these beams is an important task for the MEMS community, consisting of researchers, fabricators, and designers working on one of the many applications …