Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

University of Central Florida

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Novel Conceptual Design And Anlysis Of Polymer Derived Ceramic Mems Sensors For Gas Turbine Environment, Narasimha Nagaiah Jan 2006

Novel Conceptual Design And Anlysis Of Polymer Derived Ceramic Mems Sensors For Gas Turbine Environment, Narasimha Nagaiah

Electronic Theses and Dissertations

Technical challenges for developing micro sensors for Ultra High Temperature and turbine applications lie in that the sensors have to survive extremely harsh working conditions that exist when converting fuel to energy. These conditions include high temperatures (500-1500°C), elevated pressures (200-400 psi), pressure oscillations, corrosive environments (oxidizing conditions, gaseous alkali, and water vapors), surface coating or fouling, and high particulate loading. Several technologies are currently underdeveloped for measuring these parameters in turbine engines. One of them is an optical-based non-contact technology. However, these nondirective measuring technologies lack the necessary accuracy, at least at present state. An alternative way to measure …


Non-Silicon Microfabricated Nanostructured Chemical Sensors For Electric Nose Application, Jianwei Gong Jan 2005

Non-Silicon Microfabricated Nanostructured Chemical Sensors For Electric Nose Application, Jianwei Gong

Electronic Theses and Dissertations

A systematic investigation has been performed for "Electric Nose", a system that can identify gas samples and detect their concentrations by combining sensor array and data processing technologies. Non-silicon based microfabricatition has been developed for micro-electro-mechanical-system (MEMS) based gas sensors. Novel sensors have been designed, fabricated and tested. Nanocrystalline semiconductor metal oxide (SMO) materials include SnO2, WO3 and In2O3 have been studied for gas sensing applications. Different doping material such as copper, silver, platinum and indium are studied in order to achieve better selectivity for different targeting toxic gases including hydrogen, carbon monoxide, hydrogen sulfide etc. Fundamental issues like sensitivity, …


Uv-Liga Compatible Electroformed Nano-Structured Materials For Micro Mechanical Systems, Bo Li Jan 2005

Uv-Liga Compatible Electroformed Nano-Structured Materials For Micro Mechanical Systems, Bo Li

Electronic Theses and Dissertations

UV-LIGA is a microfabrication process realzed by material deposition through microfabricated molds. UV photolithography is conducted to pattern precise thick micro molds using UV light sensitive materials, mostly SU-8, and electroforming is performed to fabricate micro metallic structures defined by the micro molds. Therefore, UV-LIGA is a bottom-up in situ material-addition process. UV-LIGA has received broad attention recently than LIGA – a micro molding fabrication process using X-ray to pattern the micro molds. LIGA is an expansive and is limited in access. In comparing to LIGA, the UV-LIGA is a cost effective process, and is widely accessible and safe. Therefore, …