Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

Electrical and Electronics

2017

Articles 1 - 1 of 1

Full-Text Articles in Entire DC Network

Pvdf-Trfe Electroactive Polymer Mechanical-To-Electrical Energy Harvesting Experimental Bimorph Structure, William G. Kaval, Robert A. Lake, Ronald A. Coutu Jr. May 2017

Pvdf-Trfe Electroactive Polymer Mechanical-To-Electrical Energy Harvesting Experimental Bimorph Structure, William G. Kaval, Robert A. Lake, Ronald A. Coutu Jr.

Faculty Publications

Research of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Electroactive polymer (EAP) research is one of the new opportunities for harvesting energy from the natural environment and converting it into usable electrical energy. Piezoelectric ceramic based energy harvesting devices tend to be unsuitable for low-frequency mechanical excitations such as human movement. Organic polymers are typically softer and more flexible therefore translated electrical energy output is considerably higher under the same mechanical force. In addition, cantilever geometry is one of the most used structures in piezoelectric energy harvesters, …