Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

Electrical and Electronics

Faculty Publications

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Pvdf-Trfe Electroactive Polymer Mechanical-To-Electrical Energy Harvesting Experimental Bimorph Structure, William G. Kaval, Robert A. Lake, Ronald A. Coutu Jr. May 2017

Pvdf-Trfe Electroactive Polymer Mechanical-To-Electrical Energy Harvesting Experimental Bimorph Structure, William G. Kaval, Robert A. Lake, Ronald A. Coutu Jr.

Faculty Publications

Research of electrostrictive polymers has generated new opportunities for harvesting energy from the surrounding environment and converting it into usable electrical energy. Electroactive polymer (EAP) research is one of the new opportunities for harvesting energy from the natural environment and converting it into usable electrical energy. Piezoelectric ceramic based energy harvesting devices tend to be unsuitable for low-frequency mechanical excitations such as human movement. Organic polymers are typically softer and more flexible therefore translated electrical energy output is considerably higher under the same mechanical force. In addition, cantilever geometry is one of the most used structures in piezoelectric energy harvesters, …


Variable Response Of A Thermally Tuned Mems Pressure Sensor, Robert A. Lake, Ronald A. Coutu Jr. Aug 2016

Variable Response Of A Thermally Tuned Mems Pressure Sensor, Robert A. Lake, Ronald A. Coutu Jr.

Faculty Publications

A typical microelectromechanical systems (MEMS) pressure sensor consists of a thin, deformable membrane and sensing element such as a piezoresistive element which is used to measure the amount of deflection in response to an applied pressure. Previous efforts demonstrated that buckled membranes, from silicon on insulator (SOI) wafers, can be thermally tuned via joule heating. By applying heat to the membrane through a resistive heating element, compressive stress is induced in the membrane causing it to buckle further out of plane and increasing its overall stiffness response. It is demonstrated that by increasing the stiffness of the membrane, the response …


Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Feb 2016

Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Faculty Publications

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom …


Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey Jan 2008

Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey

Faculty Publications

This paper provides a quantitative comparison and explores the design space of lead zirconium titanate (PZT)–only and PZT-on-silicon length-extensional mode resonators for incorporation into radio frequency microelectromechanical system filters and oscillators. We experimentally measured the correlation of motional impedance (RX) and quality factor (Q) with the resonators’ silicon layer thickness (tSi). For identical lateral dimensions and PZT-layer thicknesses (tPZT), the PZT-on-silicon resonator has higher resonant frequency (fC), higher Q (5100 versus 140), lower RX (51 Ω versus 205 Ω), and better linearity [third-order input intercept …