Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

MEMS

Electrical and Electronics

Chengjie Zuo

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Switch-Less Dual-Frequency Reconfigurable Cmos Oscillator Using One Single Piezoelectric Aln Mems Resonator With Co-Existing S0 And S1 Lamb-Wave Modes, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza Jan 2011

Switch-Less Dual-Frequency Reconfigurable Cmos Oscillator Using One Single Piezoelectric Aln Mems Resonator With Co-Existing S0 And S1 Lamb-Wave Modes, Chengjie Zuo, Jan Van Der Spiegel, Gianluca Piazza

Chengjie Zuo

For the first time, this work demonstrates a switch-less dual-frequency (472-MHz and 1.94-GHz) reconfigurable CMOS oscillator using a single piezoelectric AlN MEMS resonator with co-existing S0 and S1 Lamb-wave modes of vibration. High performances (high Q and kt2 for a resonator and low phase noise for an oscillator) have been achieved for both the resonator and oscillator in terms of dual-mode operation. Especially, the 1.94-GHz operation has the best phase noise performance when compared with all previously reported CMOS oscillators that work at a similar frequency.


Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Nipun Sinha, Carlos R. Perez, Rashed Mahameed, Marcelo B. Pisani, Gianluca Piazza Jun 2008

Hybrid Ultra-Compact 4th Order Band-Pass Filters Based On Piezoelectric Aln Contour-Mode Mems Resonators, Chengjie Zuo, Nipun Sinha, Carlos R. Perez, Rashed Mahameed, Marcelo B. Pisani, Gianluca Piazza

Chengjie Zuo

This work reports on the design, fabrication and testing of a new class of hybrid (filter design using combined electrical and mechanical coupling techniques) ultra-compact (800×120 μm) 4th order band-pass filters based on piezoelectric Aluminum Nitride (AlN) contour-mode microelectromechanical (MEM) resonators. The demonstrated 110 MHz filter shows a low insertion loss of 5.2 dB in air, a high out-of-band rejection of 65 dB, a fractional bandwidth as high as 1.14% (hard to obtain when only conventional electrical coupling is used in the AlN contour-mode technology), and unprecedented 30 dB and 50 dB shape factors of 1.93 and 2.36, respectively. All …