Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

Aluminum

Selected Works

Engineering

2015

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya Mar 2015

Combinatorial Investigation Of Magnetostriction In Fe-Fa And Fe-Ga-Al, Jason R. Hattrick-Simpers, Dwight Hunter, Corneliu M. Craciunescu, Kyu Sung Jang, Makoto Murakami, James Cullen, Manfred Wuttig, Ichiro Takeuchi, Samuel E. Lofland, Leonid Bendersky, Noble Woo, Robert Bruce Vandover, Toshiya Takahashi, Yasubumi Furuya

Jason R. Hattrick-Simpers

A high-throughput high-sensitivity optical technique for measuringmagnetostriction of thin-film composition-spread samples has been developed. It determines the magnetostriction by measuring the induced deflection of micromachined cantilever unimorph samples. Magnetostrictionmeasurements have been performed on as-deposited Fe–Ga and Fe–Ga–Al thin-film composition spreads. The thin-film Fe–Ga spreads display a similar compositional variation of magnetostriction as bulk. A previously undiscovered peak in magnetostriction at low Ga content was also observed and attributed to a maximum in the magnetocrystalline anisotropy. Magnetostrictive mapping of the Fe–Ga–Al ternary system reveals the possibility of substituting up to 8at.%Al in Fe70Ga30 without significant degradation of magnetostriction.


Fuzzy Logic Based Model For Predicting Surface Roughness Of Machined Al-Si-Cu-Fe Die Casting Alloy Using Different Additives-Turning Jan 2015

Fuzzy Logic Based Model For Predicting Surface Roughness Of Machined Al-Si-Cu-Fe Die Casting Alloy Using Different Additives-Turning

Faculty of Engineering University of Malaya

This paper presents a fuzzy logic artificial intelligence technique for predicting the machining performance of Al-Si-Cu-Fe die casting alloy treated with different additives including strontium, bismuth and antimony to improve surface roughness. The Pareto-ANOVA optimization method was used to obtain the optimum parameter conditions for the machining process. Experiments were carried out using oblique dry CNC turning. The machining parameters of cutting speed, feed rate and depth of cut were optimized according to surface roughness values. The results indicated that a cutting speed of 250 m/min, a feed rate of 0.05 mm/rev, and a depth of cut of 0.15 mm …