Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Entire DC Network

Quantification Of Heat Flows Through Building Entrance Doors On A Winter Day, Daeho Kang Sep 2019

Quantification Of Heat Flows Through Building Entrance Doors On A Winter Day, Daeho Kang

Publications and Research

The current methods for the prediction of the heat flow through building entrance doors have been used for years while involved with a certain degree of uncertainty. This paper describes an experimental method that accurately quantified such heat flow. The experiment monitored local environmental parameters in a college building on a cold winter day. The results of the experiment demonstrated that the experimental method is viable to accurately estimate the heat flow throughout the entrance doors and the presence of a vestibule moderated heat losses from the conditioned area. The results will be used for validating the existing methods.


Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran May 2019

Surface Engineering Solutions For Immersion Phase Change Cooling Of Electronics, Brendon M. Doran

Master's Theses

Micro- and nano-scale surface modifications have been a subject of great interest for enhancing the pool boiling heat transfer performance of immersion cooling systems due to their ability to augment surface area, improve wickability, and increase nucleation site density. However, many of the surface modification technologies that have been previously demonstrated show a lack of evidence concerning scalability for use at an industrial level. In this work, the pool boiling heat transfer performance of nanoporous anodic aluminum oxide (AAO) films, copper oxide (CuO) nanostructure coatings, and 1D roll-molded microfin arrays has been studied. Each of these technologies possess scalability in …


Duocel Metal Foam Display Cases, Kate Goldsworthy, Katherina Prodanov, Benjamin Swanson, Syed Hasan May 2019

Duocel Metal Foam Display Cases, Kate Goldsworthy, Katherina Prodanov, Benjamin Swanson, Syed Hasan

Mechanical Engineering

This Final Design Review (FDR) report outlines the senior design project that was conducted by a team of four mechanical engineering students at California Polytechnic State University-San Luis Obispo for ERG Materials and Aerospace Corporation. The goal of this project was to design displays that showcase the properties of ERG’s Duocel® foam at tradeshows and client meetings. To better understand the needs of our sponsor, the team researched Duocel®’s capabilities, related technologies, and relevant standards and regulations. With this information, we further defined the problem by creating a problem statement and a set of engineering specifications through a Quality Function …


Feasibility Study Of A Novel Ground Heat Exchanger Using Phase-Change Materials, Joseph Keith Warner May 2019

Feasibility Study Of A Novel Ground Heat Exchanger Using Phase-Change Materials, Joseph Keith Warner

Masters Theses

The performance of a novel ground heat exchanger, the Underground Thermal Battery (UTB), was investigated in this paper. The UTB is an alternative to the conventional ground heat exchanger (GHE) which is designed to be installed in the shallow subsurface of the ground (less than 20 ft. deep). This can reduce the cost of drilling associated with the installation of boreholes in the conventional vertical bore ground heat exchanger (VBGHE). The UTB is a tank, 2-3 ft. in diameter, which is filled with water. The tank has a large thermal capacity which reduces the temperature response of the tank for …


Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson Mar 2019

Wall Model Large Eddy Simulation Of A Diffusing Serpentine Inlet Duct, Ryan J. Thompson

Theses and Dissertations

The modeling focus on serpentine inlet ducts (S-duct), as with any inlet, is to quantify the total pressure recovery and ow distortion after the inlet, which directly impacts the performance of a turbine engine fed by the inlet. Accurate prediction of S-duct ow has yet to be achieved amongst the computational fluid dynamics (CFD) community to improve the reliance on modeling reducing costly testing. While direct numerical simulation of the turbulent ow in an S-duct is too cost prohibitive due to grid scaling with Reynolds number, wall-modeled large eddy simulation (WM-LES) serves as a tractable alternative. US3D, a hypersonic research …


Tactical Missile Performance For Single And Multi-Wire Embedded Propellant Configurations With Discontinuities, Paul B. Wilson Mar 2019

Tactical Missile Performance For Single And Multi-Wire Embedded Propellant Configurations With Discontinuities, Paul B. Wilson

Theses and Dissertations

This research analyzes the performance of a nominal air-to-air tactical missile with varying configurations of wire-embedded end-burning solid propellant grains. Single and multi-wire models are developed to determine if total impulse and range is improved. Discontinuities in the wires are simulated to determine if gaps in the wire will affect overall performance. Five wire materials, seven wire diameters, and nine different break locations are tested. This research demonstrates wire discontinuities have negligible impact on performance and carbon nanotube fibers can theoretically improve total impulse by up to 25% compared to radially burning boost-phase grains while providing similar thrust outputs.


Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar Jan 2019

Adding Semi-Structured Automated Grid Generation And The Menter-Shear Stress Turbulence Transport Model For Internal Combustion Engine Simulations To Novel Fem Lanl Combustion Codes, Brad Montgomery Philipbar

Mechanical Engineering ETDs

The addition of GridPro semi-structured, automated generation of grids for complex moving boundaries for combustion engine applications and the Menter Shear Stress Turbulent Transfer (SST) model are being developed by Los Alamos National Laboratory. The software is called Fast, Easy, Accurate, and Robust Continuum Engineering (FEARCE). In addition to improving the time and effort required to build complex grid geometry for turbulent reactive multi-phase flow in internal combustion engines, the SST turbulence model has been programmed into the Predictor Corrector Fractional-Step (PCS) Finite Element Method (FEM) for reactive flow and turbulent incompressible flow regime validation is performed. The Reynolds-Averaged Navier-Stokes …


Me 350 Heat Transfer Laboratory, 5th Edition Jan 2019

Me 350 Heat Transfer Laboratory, 5th Edition

Mechanical Engineering Lab Manuals

Welcome to the documentation used to describe and conduct eight heat transfer experiments that are located in the Thermal Laboratory in Building 13, Room 203, at Cal Poly State University. All of the experiments are designed to illustrate many of the concepts that are presented in undergraduate thermodynamics and heat transfer classes. The first objective of each lab is to give students hands-on experience with thermal science experiments. This includes working with standard facilities and instrumentation commonly found in thermal science laboratories. The second objective of each lab is to learn how to use experimentally collected data to either validate …


Thermo-Fluid System Level Modeling For The Crome And Crome-X Ground Propellant System Using Generalized Fluid System Simulation Program, Mariano Mercado Jan 2019

Thermo-Fluid System Level Modeling For The Crome And Crome-X Ground Propellant System Using Generalized Fluid System Simulation Program, Mariano Mercado

Open Access Theses & Dissertations

A recent resurgence of interest in space exploration has given rise to a number of newcomers in the space industry. A number of private companies like SpaceX, Blue Origin, and United Launch Alliance have joined the likes of NASA with the goal to expand the current capabilities of space travel and exploration. Perhaps the most ambitious of these goals is a manned mission to Mars. In order to achieve this goal, many of these companies have taken a keen interest in liquid oxygen and methane engine technologies. Engines like the Raptor by SpaceX and the Blue Origin BE-4 already run …


Analytical Modeling And Life Cycle Assessment Of A Solar Powered Vapor Absorption Cooling System, Harold A. Walters Jan 2019

Analytical Modeling And Life Cycle Assessment Of A Solar Powered Vapor Absorption Cooling System, Harold A. Walters

Electronic Theses and Dissertations

Vapor absorption cooling systems (VACS) offer an environmentally friendly alternative to the standard vapor compression cooling systems (VCCS) for cooling homes, businesses, factories, and other buildings. VACS use low-grade thermal energy to achieve a cooling effect and require minimal electrical input for the liquid solution pump used for circulation within the system. The thermal energy which powers these systems can be provided through several means; one popular form is through the use of solar thermal collectors. This paper provides a process for determining the overall size and configuration of the VACS depending upon the operating conditions of selected components. A …


Experimental And Numerical Study Of The Stirling Engine Robust Foil Regenerator, Koji Yanaga Jan 2019

Experimental And Numerical Study Of The Stirling Engine Robust Foil Regenerator, Koji Yanaga

Graduate Theses, Dissertations, and Problem Reports

The regenerator is located between the heat accepter and the heat rejecter of the Stirling engine. It works as a thermal energy storage component in the engine. Most of the regenerators are made of woven screen or random fiber. However, the flow going through the woven screen or random fiber is similar to the cylinders in crossflow which has flow separation. To achieve higher engine efficiency, it is required to design a regenerator which has higher convective heat transfer, lower pressure drops. Therefore, a parallel channel regenerator called a robust foil regenerator was designed and manufactured.

In this study, a …


Investigation Of Heat Exchanger Effectiveness Using A Surface Coating Technology, Allen Duffy Jan 2019

Investigation Of Heat Exchanger Effectiveness Using A Surface Coating Technology, Allen Duffy

Graduate Theses, Dissertations, and Problem Reports

Diesel engine manufacturers continue to improve engine performance through increased thermal efficiency and reduced regulated emissions. The aftercooler located between the turbocharger air outlet and intake manifold experiences a wide range of operating conditions. Improving the heat transfer characteristics in the aftercooler can lead towards improved engine performance through increased charge air density. A surface coating has been proposed to enhance the heat transfer characteristics for a marine-based application on the water - side of the heat exchanger. To evaluate the efficacy of the coating, the rate of heat transfer with and without the coating was quantified in a controlled …


Laser Ablation Of Aluminum, Erika Nosal, Zachary Rahe, Arthur Pamboukis Jan 2019

Laser Ablation Of Aluminum, Erika Nosal, Zachary Rahe, Arthur Pamboukis

Williams Honors College, Honors Research Projects

The laser ablation of metal carries relevance in a variety of engineering industries. This includes, but is not limited to, processes such as micromachining, or implementation on aircraft weaponry. The latter application is the reasoning for why aluminum is the specific metal in consideration, as it is commonly used for the construction of aircraft components.

The scope of this project was to optimize the energy dispersed through laser ablation on aluminum by mathematical modeling. The transient conduction process in the aluminum was modeled using a 2-dimensional cylindrical coordinate system in both MATLAB and ANSYS/Fluent. These models were adopted to simulate …