Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Software-Defined Infrastructure For Iot-Based Energy Systems, Stephen Lee Oct 2019

Software-Defined Infrastructure For Iot-Based Energy Systems, Stephen Lee

Doctoral Dissertations

Internet of Things (IoT) devices are becoming an essential part of our everyday lives. These physical devices are connected to the internet and can measure or control the environment around us. Further, IoT devices are increasingly being used to monitor buildings, farms, health, and transportation. As these connected devices become more pervasive, these devices will generate vast amounts of data that can be used to gain insights and build intelligence into the system. At the same time, large-scale deployment of these devices will raise new challenges in efficiently managing and controlling them. In this thesis, I argue that the IoT …


Measurement And Estimation Of The Equivalent Circuit Parameters For Multi-Mw Battery Systems, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel Sep 2019

Measurement And Estimation Of The Equivalent Circuit Parameters For Multi-Mw Battery Systems, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper proposes and validates through simulations and measurements, a procedure for the determining the equivalent circuit parameters of large utility-scale batteries. It is considered that a large battery includes multiple cells connected in series and parallel, and therefore, its equivalent circuit can be represented as a series-parallel network of state of charge (SOC) dependent resistors and capacitors. Tests for determining these equivalent circuit parameters are proposed. These tests involve subjecting the battery energy storage system (BESS) to multiple charge and discharge cycles, while monitoring the terminal voltage and current response. A method for post-processing and analyzing the measurements in …


Modeling And Simulation Of A Utility-Scale Battery Energy Storage System, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel Aug 2019

Modeling And Simulation Of A Utility-Scale Battery Energy Storage System, Oluwaseun M. Akeyo, Vandana Rallabandi, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper presents the modeling and simulation study of a utility-scale MW level Li-ion based battery energy storage system (BESS). A runtime equivalent circuit model, including the terminal voltage variation as a function of the state of charge and current, connected to a bidirectional power conversion system (PCS), was developed based on measurements from an operational utility-scale battery demonstrator. The accelerated response of the battery unit was verified by pulse discharging it from maximum to minimum SOC and its application for grid resiliency was demonstrated through an example droop control frequency response. For the purpose of validating the equivalent BESS …


Characterization Of Mechanical Properties Of Thin-Film Li-Ion Batteryelectrodes From Laser Excitation And Measurements Ofzero-Group Velocity Resonances, Jing Yao Mar 2019

Characterization Of Mechanical Properties Of Thin-Film Li-Ion Batteryelectrodes From Laser Excitation And Measurements Ofzero-Group Velocity Resonances, Jing Yao

Theses and Dissertations

The mechanical properties of thin-film Li-ion battery electrodes are controlled by the micro structure of the constituent materials. In this work, a non-contact and non-destructive measurement of the mechanical properties of electrode films is performed by measurement of zero group velocity (ZGV) resonances. The ZGV Lamb wave modes of a solid bi-layer consisting of a thin metallic layer and a thin compliant coating layer are shown to be dependent on the Young's moduli, thicknesses, densities and Poisson ratios of the layers. Theoretical models are used to quantify the sensitivity of the ZGV resonances to changes in mechanical properties. Experimental ZGV …


Optimization Of Pv Powered Spd Switchable Glazing To Minimise Probability Of Loss Of Power Supply, Aritra Ghosh, Brian Norton Jan 2019

Optimization Of Pv Powered Spd Switchable Glazing To Minimise Probability Of Loss Of Power Supply, Aritra Ghosh, Brian Norton

Articles

Suspended particle device (SPD) glazing is an electrically actuated switchable glazing. It requires alternate current (AC) power supply to switch from opaque to transparent state. To power this glazing using PV device requires inverter. Optimization of AC powered switchable SPD glazing using photovoltaic (PV) device has been evaluated using loss of power supply probability (LPSP). Electrically switchable direct current (DC) powered electrochromic glazing was also considered in this investigation as it doesn't need any inverter to couple with PV. It is concluded that behaviour of these glazings is the dominant factor in performance optimization outweighting than azimuthal orientation and inclination …


Pv-Based Off-Board Electric Vehicle Battery Charger Using Bidc, Ankita Paul, Krithiga Subramanian, Sujitha N Jan 2019

Pv-Based Off-Board Electric Vehicle Battery Charger Using Bidc, Ankita Paul, Krithiga Subramanian, Sujitha N

Turkish Journal of Electrical Engineering and Computer Sciences

In recent years, the use of renewable energy sources is increasing drastically in several sectors, which leads to its role in the automobile industry to charge electric vehicle (EV) batteries. In this paper, a photovoltaic (PV) array-fed off-board battery charging system using a bidirectional interleaved DC-DC converter (BIDC) is proposed for light-weight EVs. This off-board charging system is capable of operating in dual mode, thereby supplying power to the EV battery from the PV array in standstill conditions and driving the DC load by the EV battery during running conditions. This dual mode operation is accomplished by the use of …


Incorporating Battery Energy Storage Systems Into Multi-Mw Grid Connected Pv Systems, Vandana Rallabandi, Oluwaseun M. Akeyo, Nicholas Jewell, Dan M. Ionel Jan 2019

Incorporating Battery Energy Storage Systems Into Multi-Mw Grid Connected Pv Systems, Vandana Rallabandi, Oluwaseun M. Akeyo, Nicholas Jewell, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

This paper analyzes the configuration, design, and operation of multi-MW grid connected solar photovoltaic (PV) systems with practical test cases provided by a 10-MW field development. In order to improve the capacity factor, the PV system operates at its maximum power point during periods of lower irradiance, and the power output is limited to a rated value at high irradiance. The proposed configuration also incorporates a utility scale battery energy storage system (BESS) connected to the grid through an independent inverter and benefits of the experience gained with a 1-MW 2-MWh BESS large demonstrator. The BESS power smoothing and frequency …


A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt Jan 2019

A Sustainable Prototype For Renewable Energy: Optimized Prime-Power Generator Solar Array Replacement, Nathan Thomsen, Torrey J. Wagner, Andrew J. Hoisington, Steven J. Schuldt

Faculty Publications

Remote locations such as disaster relief camps, isolated arctic communities, and military forward operating bases are disconnected from traditional power grids forcing them to rely on diesel generators with a total installed capacity of 10,000 MW worldwide. The generators require a constant resupply of fuel, resulting in increased operating costs, negative environmental impacts, and challenging fuel logistics. To enhance remote site sustainability, planners can develop stand-alone photovoltaic-battery systems to replace existing prime power generators. This paper presents the development of a novel cost-performance model capable of optimizing solar array and Li-ion battery storage size by generating tradeoffs between minimizing initial …