Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Machine learning

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 162

Full-Text Articles in Entire DC Network

Looping Predictive Method To Improve Accuracy Of A Machine Learning Model, Subramanyam Reddy Pogili Dec 2017

Looping Predictive Method To Improve Accuracy Of A Machine Learning Model, Subramanyam Reddy Pogili

Theses

The topic of this project is an analysis of drug-related tweets. The goal is to build a Machine Learning Model that can distinguish between tweets that indicate drug abuse and other tweets that also contain the name of a drug but do not describe abuse. Drugs can be illegal, such as heroin, or legal drugs with a potential of abuse, such as painkillers. However, building a good Machine Learning Model requires a large amount of training data. For each training tweet, a human expert has determined whether it indicates drug abuse or not. This is difficult work for humans. …


Visual Odometry Using Convolutional Neural Networks, Alec Graves, Steffen Lim, Thomas Fagan, Kevin Mcfall Phd. Dec 2017

Visual Odometry Using Convolutional Neural Networks, Alec Graves, Steffen Lim, Thomas Fagan, Kevin Mcfall Phd.

The Kennesaw Journal of Undergraduate Research

Visual odometry is the process of tracking an agent's motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution.


Understanding Huntington's Disease Using Machine Learning Approaches, Sonali Lokhande Dec 2017

Understanding Huntington's Disease Using Machine Learning Approaches, Sonali Lokhande

KGI Theses and Dissertations

Huntington’s disease (HD) is a debilitating neurodegenerative disorder with a complex pathophysiology. Despite extensive studies to study the disease, the sequence of events through which mutant Huntingtin (mHtt) protein executes its action still remains elusive. The phenotype of HD is an outcome of numerous processes initiated by the mHtt protein along with other proteins that act as either suppressors or enhancers of the effects of mHtt protein and PolyQ aggregates. Utilizing an integrative systems biology approach, I construct and analyze a Huntington’s disease integrome using human orthologs of protein interactors of wild type and mHtt protein. Analysis of this integrome …


Fifa: Exploring A Focally Induced Fault Attack Strategy In Near-Threshold Computing, Prabal Basu, Chidhambaranathan Rajamanikkam, Aatreyi Bal, Pramesh Pandey, Trevor Carter, Koushik Chakraborty, Sanghamitra Roy Dec 2017

Fifa: Exploring A Focally Induced Fault Attack Strategy In Near-Threshold Computing, Prabal Basu, Chidhambaranathan Rajamanikkam, Aatreyi Bal, Pramesh Pandey, Trevor Carter, Koushik Chakraborty, Sanghamitra Roy

Electrical and Computer Engineering Faculty Publications

In this letter, we explore the emerging security threats of near-threshold computing (NTC). Researchers have shown that the delay sensitivity of a circuit to supply voltage variation tremendously increases, as the circuit's operating conditions shift from traditional super-threshold values to NTC values. As a result, NTC systems become extremely vulnerable to timing fault attacks, jeopardizing trustworthy computing. Inspired by the operation of a polymorphic virus, we propose a novel threat model for NTC, referred to as a focally induced fault attack (FIFA). FIFA employs a machine learning framework to ascertain the circuit vulnerabilities and generates targeted software modules to cause …


Instagram Photos Reveal Predictive Markers Of Depression, Andrew G. Reece, Christopher M. Danforth Dec 2017

Instagram Photos Reveal Predictive Markers Of Depression, Andrew G. Reece, Christopher M. Danforth

College of Engineering and Mathematical Sciences Faculty Publications

Using Instagram data from 166 individuals, we applied machine learning tools to successfully identify markers of depression. Statistical features were computationally extracted from 43,950 participant Instagram photos, using color analysis, metadata components, and algorithmic face detection. Resulting models outperformed general practitioners’ average unassisted diagnostic success rate for depression. These results held even when the analysis was restricted to posts made before depressed individuals were first diagnosed. Human ratings of photo attributes (happy, sad, etc.) were weaker predictors of depression, and were uncorrelated with computationally-generated features. These results suggest new avenues for early screening and detection of mental illness.


Uncovering New Links Through Interaction Duration, Laxmi Amulya Gundala Dec 2017

Uncovering New Links Through Interaction Duration, Laxmi Amulya Gundala

Boise State University Theses and Dissertations

Link Prediction is the problem of inferring new relationships among nodes in a network that can occur in the near future. Classical approaches mainly consider neighborhood structure similarity when linking nodes. However, we may also want to take into account whether the two nodes we are going to link will benefit from that by having an active interaction over time. For instance, it is better to link two nodes � and � if we know that these two nodes will interact in the social network in the future, rather than suggesting �, who may never interact with �. Thus, the …


Machine Learning To Discover And Optimize Materials, Conrad Waldhar Rosenbrock Dec 2017

Machine Learning To Discover And Optimize Materials, Conrad Waldhar Rosenbrock

Theses and Dissertations

For centuries, scientists have dreamed of creating materials by design. Rather than discovery by accident, bespoke materials could be tailored to fulfill specific technological needs. Quantum theory and computational methods are essentially equal to the task, and computational power is the new bottleneck. Machine learning has the potential to solve that problem by approximating material behavior at multiple length scales. A full end-to-end solution must allow us to approximate the quantum mechanics, microstructure and engineering tasks well enough to be predictive in the real world. In this dissertation, I present algorithms and methodology to address some of these problems at …


Ethics And Bias In Machine Learning: A Technical Study Of What Makes Us “Good”, Ashley Nicole Shadowen Dec 2017

Ethics And Bias In Machine Learning: A Technical Study Of What Makes Us “Good”, Ashley Nicole Shadowen

Student Theses

The topic of machine ethics is growing in recognition and energy, but bias in machine learning algorithms outpaces it to date. Bias is a complicated term with good and bad connotations in the field of algorithmic prediction making. Especially in circumstances with legal and ethical consequences, we must study the results of these machines to ensure fairness. This paper attempts to address ethics at the algorithmic level of autonomous machines. There is no one solution to solving machine bias, it depends on the context of the given system and the most reasonable way to avoid biased decisions while maintaining the …


Video Frame Interpolation Via Adaptive Separable Convolution, Simon Niklaus, Long Mai, Feng Liu Dec 2017

Video Frame Interpolation Via Adaptive Separable Convolution, Simon Niklaus, Long Mai, Feng Liu

Computer Science Faculty Publications and Presentations

Standard video frame interpolation methods first estimate optical flow between input frames and then synthesize an intermediate frame guided by motion. Recent approaches merge these two steps into a single convolution process by convolving input frames with spatially adaptive kernels that account for motion and re-sampling simultaneously. These methods require large kernels to handle large motion, which limits the number of pixels whose kernels can be estimated at once due to the large memory demand. To address this problem, this paper formulates frame interpolation as local separable convolution over input frames using pairs of 1D kernels. Compared to regular 2D …


A Test Driven Approach To Develop Web-Based Machine Learning Applications, Armin Esmaeilzadeh Dec 2017

A Test Driven Approach To Develop Web-Based Machine Learning Applications, Armin Esmaeilzadeh

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this thesis is to propose the design and architecture of a testable, scalable, and ef-cient web-based application that models and implements machine learning applications in cancer prediction. There are various components that form the architecture of our web-based application including server, database, programming language, web framework, and front-end design. There are also other factors associated with our application such as testability, scalability, performance, and design pattern. Our main focus in this thesis is on the testability of the system while consid- ering the importance of other factors as well.

The data set for our application is a …


Artificial Intelligence In Health Care: Applications And Legal Implications, W. Nicholson Price Ii Nov 2017

Artificial Intelligence In Health Care: Applications And Legal Implications, W. Nicholson Price Ii

Articles

Artificial intelligence (AI) is rapidly moving to change the healthcare system. Driven by the juxtaposition of big data and powerful machine learning techniques—terms I will explain momentarily—innovators have begun to develop tools to improve the process of clinical care, to advance medical research, and to improve efficiency. These tools rely on algorithms, programs created from healthcare data that can make predictions or recommendations. However, the algorithms themselves are often too complex for their reasoning to be understood or even stated explicitly. Such algorithms may be best described as “black-box.” This article briefly describes the concept of AI in medicine, including …


Using Unmanned Aerial Vehicles For Wireless Localization In Search And Rescue, Virgilio Acuna Nov 2017

Using Unmanned Aerial Vehicles For Wireless Localization In Search And Rescue, Virgilio Acuna

FIU Electronic Theses and Dissertations

This thesis presents how unmanned aerial vehicles (UAVs) can successfully assist in search and rescue (SAR) operations using wireless localization. The zone-grid to partition to capture/detect WiFi probe requests follows the concepts found in Search Theory Method. The UAV has attached a sensor, e.g., WiFi sniffer, to capture/detect the WiFi probes from victims or lost people’s smartphones. Applying the Random-Forest based machine learning algorithm, an estimation of the user's location is determined with a 81.8% accuracy.

UAV technology has shown limitations in the navigational performance and limited flight time. Procedures to optimize these limitations are presented. Additionally, how the UAV …


Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro Nov 2017

Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro

Juan R. Sanabria

Background: Understanding factors which predict progression of renal failure is of great interest to clinicians.

Objectives: We examined machine learning methods to predict the composite outcome of death, dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) data set.

Methods: We specifically evaluated a generalized linear model, a support vector machine, a decision tree, a feed-forward neural network and a random forest evaluated within the context of 10 fold validation using the CARET package available within the open source architecture R program.

Results: We found that using clinical parameters available at entry into the …


Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro Nov 2017

Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro

Joseph I Shapiro MD

Background: Understanding factors which predict progression of renal failure is of great interest to clinicians. Objectives: We examined machine learning methods to predict the composite outcome of death, dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) data set. Methods: We specifically evaluated a generalized linear model, a support vector machine, a decision tree, a feed-forward neural network and a random forest evaluated within the context of 10 fold validation using the CARET package available within the open source architecture R program. Results: We found that using clinical parameters available at entry into the …


Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro Nov 2017

Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro

Nader G. Abraham

Background: Understanding factors which predict progression of renal failure is of great interest to clinicians.

Objectives: We examined machine learning methods to predict the composite outcome of death, dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) data set.

Methods: We specifically evaluated a generalized linear model, a support vector machine, a decision tree, a feed-forward neural network and a random forest evaluated within the context of 10 fold validation using the CARET package available within the open source architecture R program.

Results: We found that using clinical parameters available at entry into the …


Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro Nov 2017

Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro

Komal Sodhi

Background: Understanding factors which predict progression of renal failure is of great interest to clinicians.

Objectives: We examined machine learning methods to predict the composite outcome of death, dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) data set.

Methods: We specifically evaluated a generalized linear model, a support vector machine, a decision tree, a feed-forward neural network and a random forest evaluated within the context of 10 fold validation using the CARET package available within the open source architecture R program.

Results: We found that using clinical parameters available at entry into the …


Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro Nov 2017

Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro

Zeid J. Khitan

Background: Understanding factors which predict progression of renal failure is of great interest to clinicians.

Objectives: We examined machine learning methods to predict the composite outcome of death, dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) data set.

Methods: We specifically evaluated a generalized linear model, a support vector machine, a decision tree, a feed-forward neural network and a random forest evaluated within the context of 10 fold validation using the CARET package available within the open source architecture R program.

Results: We found that using clinical parameters available at entry into the …


Deep-Learned Generative Representations Of 3d Shape Families, Haibin Huang Nov 2017

Deep-Learned Generative Representations Of 3d Shape Families, Haibin Huang

Doctoral Dissertations

Digital representations of 3D shapes are becoming increasingly useful in several emerging applications, such as 3D printing, virtual reality and augmented reality. However, traditional modeling softwares require users to have extensive modeling experience, artistic skills and training to handle their complex interfaces and perform the necessary low-level geometric manipulation commands. Thus, there is an emerging need for computer algorithms that help novice and casual users to quickly and easily generate 3D content. In this work, I will present deep learning algorithms that are capable of automatically inferring parametric representations of shape families, which can be used to generate new 3D …


Deep Energy-Based Models For Structured Prediction, David Belanger Nov 2017

Deep Energy-Based Models For Structured Prediction, David Belanger

Doctoral Dissertations

We introduce structured prediction energy networks (SPENs), a flexible frame- work for structured prediction. A deep architecture is used to define an energy func- tion over candidate outputs and predictions are produced by gradient-based energy minimization. This deep energy captures dependencies between labels that would lead to intractable graphical models, and allows us to automatically discover discrim- inative features of the structured output. Furthermore, practitioners can explore a wide variety of energy function architectures without having to hand-design predic- tion and learning methods for each model. This is because all of our prediction and learning methods interact with the energy …


An Integrated Framework For Staffing And Shift Scheduling In Hospitals, Wael Rashwan Nov 2017

An Integrated Framework For Staffing And Shift Scheduling In Hospitals, Wael Rashwan

Doctoral

Over the years, one of the main concerns confronting hospital management is optimising the staffing and scheduling decisions. Consequences of inappropriate staffing can adversely impact on hospital performance, patient experience and staff satisfaction alike. A comprehensive review of literature (more than 1300 journal articles) is presented in a new taxonomy of three dimensions; problem contextualisation, solution approach, evaluation perspective and uncertainty. Utilising Operations Research methods, solutions can provide a positive contribution in underpinning staffing and scheduling decisions. However, there are still opportunities to integrate decision levels; incorporate practitioners view in solution architectures; consider staff behaviour impact, and offer comprehensive applied …


A Decision Tree Approach For The Musical Genres Classification, Glaucia M. Bressan, Beatriz C. F. De Azevedo, Elisangela Ap. S. Lizzi Nov 2017

A Decision Tree Approach For The Musical Genres Classification, Glaucia M. Bressan, Beatriz C. F. De Azevedo, Elisangela Ap. S. Lizzi

Applied Mathematics & Information Sciences

The interest in the music classification has increased due to its wide applicability and discoveries obtained from researches. However, efficient methods for systemic organization of digital libraries are required, since users need to classify the available music files. When an automatic classification is desired, the extraction of input attributes and an efficient system, able to process them, are needed. In this context, the use of decision trees as a tool to predict musical genres classes allows the monitoring of the ramification, since nodes and branches of the tree can be accessed in this process. Decision tree is a technique very …


An Integrated Framework For Modeling And Predicting Spatiotemporal Phenomena In Urban Environments, Tuc Viet Le Nov 2017

An Integrated Framework For Modeling And Predicting Spatiotemporal Phenomena In Urban Environments, Tuc Viet Le

Dissertations and Theses Collection (Open Access)

This thesis proposes a general solution framework that integrates methods in machine learning in creative ways to solve a diverse set of problems arising in urban environments. It particularly focuses on modeling spatiotemporal data for the purpose of predicting urban phenomena. Concretely, the framework is applied to solve three specific real-world problems: human mobility prediction, trac speed prediction and incident prediction. For human mobility prediction, I use visitor trajectories collected a large theme park in Singapore as a simplified microcosm of an urban area. A trajectory is an ordered sequence of attraction visits and corresponding timestamps produced by a visitor. …


Scalable Online Kernel Learning, Jing Lu Nov 2017

Scalable Online Kernel Learning, Jing Lu

Dissertations and Theses Collection (Open Access)

One critical deficiency of traditional online kernel learning methods is their increasing and unbounded number of support vectors (SV’s), making them inefficient and non-scalable for large-scale applications. Recent studies on budget online learning have attempted to overcome this shortcoming by bounding the number of SV’s. Despite being extensively studied, budget algorithms usually suffer from several drawbacks.
First of all, although existing algorithms attempt to bound the number of SV’s at each iteration, most of them fail to bound the number of SV’s for the final averaged classifier, which is commonly used for online-to-batch conversion. To solve this problem, we propose …


Fast On-Line Kernel Density Estimation For Active Object Localization, Anthony D. Rhodes, Max H. Quinn, Melanie Mitchell Nov 2017

Fast On-Line Kernel Density Estimation For Active Object Localization, Anthony D. Rhodes, Max H. Quinn, Melanie Mitchell

Computer Science Faculty Publications and Presentations

A major goal of computer vision is to enable computers to interpret visual situations—abstract concepts (e.g., “a person walking a dog,” “a crowd waiting for a bus,” “a picnic”) whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. In this paper, we propose a novel method for prior learning and active object localization for this kind of knowledge-driven search in static images. In our system, prior situation knowledge is captured by a set of flexible, kernel-based density estimations— a situation model—that represent the expected spatial structure of the given situation. These …


Anomaly Detection For A Water Treatment System Using Unsupervised Machine Learning, Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christopher M. Poskitt, Jun Sun Nov 2017

Anomaly Detection For A Water Treatment System Using Unsupervised Machine Learning, Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christopher M. Poskitt, Jun Sun

Research Collection School Of Computing and Information Systems

In this paper, we propose and evaluate the application of unsupervised machine learning to anomaly detection for a Cyber-Physical System (CPS). We compare two methods: Deep Neural Networks (DNN) adapted to time series data generated by a CPS, and one-class Support Vector Machines (SVM). These methods are evaluated against data from the Secure Water Treatment (SWaT) testbed, a scaled-down but fully operational raw water purification plant. For both methods, we first train detectors using a log generated by SWaT operating under normal conditions. Then, we evaluate the performance of both methods using a log generated by SWaT operating under 36 …


Autoplug: An Automated Metadata Service For Smart Outlets, Lurdh Pradeep Reddy Ambati Oct 2017

Autoplug: An Automated Metadata Service For Smart Outlets, Lurdh Pradeep Reddy Ambati

Masters Theses

Low-cost network-connected smart outlets are now available for monitoring, controlling, and scheduling the energy usage of electrical devices. As a result, such smart outlets are being integrated into automated home management systems, which remotely control them by analyzing and interpreting their data. However, to effectively interpret data and control devices, the system must know the type of device that is plugged into each smart outlet. Existing systems require users to manually input and maintain the outlet metadata that associates a device type with a smart outlet. Such manual operation is time-consuming and error-prone: users must initially inventory all outlet-to-device mappings, …


Neural Network Prediction Of Barbell Kinematics From Joint Kinetics In Weightlifting, Kristof Kipp Oct 2017

Neural Network Prediction Of Barbell Kinematics From Joint Kinetics In Weightlifting, Kristof Kipp

ISBS Proceedings Archive

The purpose of this study was to develop and train neural networks (NN) to predict barbell motion and velocity from hip, knee, and ankle joint torques during a weightlifting exercise. Seven weightlifters performed two repetitions of the clean exercise at 85% of maximum while reaction forces and 3-D motion data of the lifter and barbell were acquired. An inverse dynamics procedure was then used to calculate torques at the hip, knee, and ankle joints. The joint torque time-series data were used as inputs to two seperate NN to predict 1) the horizontal and vertical barbell trajectories and 2) the vertical …


Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro Oct 2017

Predicting Adverse Outcomes In Chronic Kidney Disease Using Machine Learning Methods: Data From The Modification Of Diet In Renal Disease, Zeid Khitan, Anna P. Shapiro, Preeya T. Shah, Juan R. Sanabria, Prasanna Santhanam, Komal Sodhi, Nader G. Abraham, Joseph I. Shapiro

Marshall Journal of Medicine

Background: Understanding factors which predict progression of renal failure is of great interest to clinicians.

Objectives: We examined machine learning methods to predict the composite outcome of death, dialysis or doubling of serum creatinine using the modification of diet in renal disease (MDRD) data set.

Methods: We specifically evaluated a generalized linear model, a support vector machine, a decision tree, a feed-forward neural network and a random forest evaluated within the context of 10 fold validation using the CARET package available within the open source architecture R program.

Results: We found that using clinical parameters available at entry into the …


Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad Oct 2017

Pattern Discovery In Brain Imaging Genetics Via Scca Modeling With A Generic Non-Convex Penalty, Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, Li Shen, Michael W. Weiner, Paul Aisen, Ronald Petersen, Clifford R. Jack, William Jagust, John Q. Trojanowki, Arthur W. Toga, Laurel Beckett, Robert C. Green, John Morris, Leslie M. Shaw, Zaven Khachaturian, Greg Sorensen, Maria Carrillo, Lew Kuller, Marc Raichle, Steven Paul, Peter Davies, Howard Fillit, Franz Hefti, David Holtzman, Charles D. Smith, Gregory Jicha, Peter A. Hardy, Partha Sinha, Elizabeth Oates, Gary Conrad

Neurology Faculty Publications

Brain imaging genetics intends to uncover associations between genetic markers and neuroimaging quantitative traits. Sparse canonical correlation analysis (SCCA) can discover bi-multivariate associations and select relevant features, and is becoming popular in imaging genetic studies. The L1-norm function is not only convex, but also singular at the origin, which is a necessary condition for sparsity. Thus most SCCA methods impose 1-norm onto the individual feature or the structure level of features to pursuit corresponding sparsity. However, the 1-norm penalty over-penalizes large coefficients and may incurs estimation bias. A number of non-convex penalties are proposed to reduce …


Evolution Of Bias In Human And Machine Learning Algorithm Interaction, Wenlong Sun, Olfa Nasraoui, Patrick Shafto Oct 2017

Evolution Of Bias In Human And Machine Learning Algorithm Interaction, Wenlong Sun, Olfa Nasraoui, Patrick Shafto

Commonwealth Computational Summit

Human algorithm interaction:

  • people are now affected by the output of all types of machine learning algorithms.
  • social media, blogs, social networks, and other services and applications.

Motivation:

  • ML algorithm relied on reliable labels from experts to build prediction.
  • However, ML algorithm started to receive data from the more general population.
  • The interaction leads to biased result which is caused by ingesting unchecked information from general population, such as biased samples and biased labels.