Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

CFD

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 39

Full-Text Articles in Entire DC Network

Assessment Of Dynamic Effect Of Transmission Line Conductor Longitudinal Reaction Due To Downburst Loading, Ibrahim Ibrahim Dec 2017

Assessment Of Dynamic Effect Of Transmission Line Conductor Longitudinal Reaction Due To Downburst Loading, Ibrahim Ibrahim

Electronic Thesis and Dissertation Repository

Due to the locality and non-stationary nature of downburst wind loading events, their effect on the structural response of transmission line structures is of special nature that differs from conventional atmospheric boundary layer wind loading. Acknowledging such difference, the current thesis aims to quantify the dynamic effect associated with downburst loading on transmission line systems. To achieve that, several steps had to be realized, including experimentally verifying the numerical model used for analysis using wind field that was generated using computational fluid dynamics. The verified model was extended from model scale to full scale, where the wind field used for …


Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam Dec 2017

Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam

LSU Doctoral Dissertations

The application of the Euler-Euler framework based Computational Fluid Dynamics (CFD) models for simulating the two-phase gas-liquid bubbly flow in down-flow bubble columns is discussed in detail. Emphasis is given towards the modelling and design optimization of a novel down-flow bubble column. The design features of this novel down-flow bubble column and its advantages over a conventional Plunging Jet down-flow bubble column are discussed briefly. Then, some of the present challenges in simulating a conventional Plunging Jet down-flow bubble column in the Euler-Euler framework is highlighted, and a sigmoid function based drag modification function is implemented to overcome those challenges. …


Transformation Of Nonlinear Waves In The Presence Of Wind, Current, And Vegetation, Haifei Chen Dec 2017

Transformation Of Nonlinear Waves In The Presence Of Wind, Current, And Vegetation, Haifei Chen

Electronic Theses and Dissertations

Accurate prediction of extreme wave events is crucial for the safe maritime activities and offshore operations. Improved knowledge of wave dissipation mechanisms due to breaking and vegetation leads to accurate wave forecast, protecting life and property along the coast. The scope of the thesis is to examine the wave transformations in the presence of wind, current, and vegetation, using a two-phase flow solver based on the open-source platform OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with a Volume of Fluid (VOF) surface capturing scheme and a turbulence closure model. This RANS-VOF model is adapted to develop a numerical wind-wave-current …


Numerical Investigation Of Drop Impingement On Dry And Wet Surfaces., Yisen Guo Dec 2017

Numerical Investigation Of Drop Impingement On Dry And Wet Surfaces., Yisen Guo

Electronic Theses and Dissertations

In-flight icing due to supercooled large droplets (SLDs) imposes great danger on aviation safety. Because of the large size, SLDs have different characteristics than typical cloud droplets that most icing encounters involve. As a result, SLDs more likely hit the wing surface and move into areas not protected by de-icing devices to form ice, which can lead to loss of lift, increase in drag, altered controllability, and eventually stall and loss of control of the aircraft. The phenomenon of droplet splashing is considered as the most important aspect of the SLD icing accretion problem. Although previous studies have established splashing …


Development Of A Multi-Jointed Wing Surface Mover, Collin Arthur Strassburger Dec 2017

Development Of A Multi-Jointed Wing Surface Mover, Collin Arthur Strassburger

Masters Theses

The field of ornithopter research has reached a point where it has become commonplace for Computational Fluid Dynamics (CFD) solvers to have built-in capabilities for rigid solid body motion. This is suitable for micro air vehicles (MAVs) yet is often not exible enough to model wings with dynamic internal structure, such as the wings of birds and bats. There is currently no program available to perform the surface motion of a wing which has multiple independently moving joints. The code, detailed in this paper, provides the user with this type of capability. The bone lengths, joint angle properties, and thickening …


A Comparison Of Mean Age Theory And Residence Time Distributions In Mixed Systems., Nolan Theaker Dec 2017

A Comparison Of Mean Age Theory And Residence Time Distributions In Mixed Systems., Nolan Theaker

Electronic Theses and Dissertations

A comparison between mean age theory and conventional residence time distributions over a range of quantified mixing levels was conducted using computational fluid dynamics (CFD). The system was a stirred tubular reactor. The model was validated by comparing computationally derived RTD curves with experimentally obtained RTD curves, with quantified differences less than 3%. Mixing was quantified using the Tanks-in-Series model. Mixing levels were set by varying flow rate and impeller rpm. Mean age distributions at the outlet, where experimental RTD’s were measured, were very narrow for all levels of mixing studied. RTD’s showed expected characteristics; a wider distribution and long …


Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo Dec 2017

Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research is to provide a detailed numerical analysis of flow field and heat transfer inside the heat collecting element of a parabolic trough collector. The parabolic trough collector is used as the boiler in a direct Super Critical Carbon Dioxide (S-CO2) Brayton cycle.

A single collector is modeled and analyzed with different inlet conditions. The working fluid is supercritical since its pressure is increased to above critical pressure in the compressor while its temperature reaches 300 °C after passing through the recuperators and before entering the solar field. For the first time, this research considers both …


The Effects Of Exhaust Vent Location On Thermal Comfort Inside The Residential Buildings Equipped With An Evaporative Cooling System, Armin Saraei Dec 2017

The Effects Of Exhaust Vent Location On Thermal Comfort Inside The Residential Buildings Equipped With An Evaporative Cooling System, Armin Saraei

UNLV Theses, Dissertations, Professional Papers, and Capstones

Inlet and outlet conditions, Including size and location, have significant effects on the air distribution, temperature, humidity and thermal comfort in the buildings. In the current study, various strategies are presented for exhaust air vents and the effects of inlet and outlet vents locations are evaluated on providing thermal comfort in the residential and industrial buildings. To provide thermal comfort, three key factors need to be investigated based on ASHRAE standard 55- 2013 as follows: Comfort Zone, Thermal Sensation and Draft Rate. Flow distribution is studied as well in order to investigate the strategies, which make more vorticity in the …


Cfd Evaluation Of Mixing Processes For High-Level Nuclear Waste Tanks, Maximiliano Edrei Nov 2017

Cfd Evaluation Of Mixing Processes For High-Level Nuclear Waste Tanks, Maximiliano Edrei

FIU Electronic Theses and Dissertations

Computational Fluid Dynamics (CFD) has been applied to investigate two aspects of a mixing process for high level nuclear waste tanks. Through CFD the applicability of Poreh’s correlations that are currently used to describe the radial wall jets in the Pulse Jet Mixing (PJM) process were assessed. In addition, simulations were conducted in order to investigate mean hydrodynamic characteristics of sparged non-Newtonian fluids for the use in the PJM process.

Three single phase turbulent simulations using the commercial package STAR-CCM+ were successively conducted. A model validated with experimental data was developed and successively altered to see effects of low characteristic …


A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan Nov 2017

A High Quality, Eulerian 3d Fluid Solver In C++, Lejon Anthony Mcgowan

Computer Science and Software Engineering

Fluids are a part of everyday life, yet are one of the hardest elements to properly render in computer graphics. Water is the most obvious entity when thinking of what a fluid simulation can achieve (and it is indeed the focus of this project), but many other aspects of nature, like fog, clouds, and particle effects. Real-time graphics like video games employ many heuristics to approximate these effects, but large-scale renderers aim to simulate these effects as closely as possible.

In this project, I wish to achieve effects of the latter nature. Using the Eulerian technique of discrete grids, I …


Aerosol Transport By Coughing In A Depressurized And Air-Conditioned Chamber, Bo Zhang Oct 2017

Aerosol Transport By Coughing In A Depressurized And Air-Conditioned Chamber, Bo Zhang

Dissertations

Expiratory droplets from human coughing in an air-conditioned environment have always been considered to be potential carriers of pathogens, responsible for respiratory disease transmission. The air movement/circulation and ambient conditions such as pressure and temperature are all key factors of aerosol transport. To study the transmission of disease by human coughing in a depressurized air-conditioned chamber, there are many technical challenges, including the following: 1) the study of simulating human coughing; 2) the collection of aerosol generated by coughing; 3) the CFD simulation of coughing-induced aerosol transport in an air-conditioned chamber; 4) the validation of such a CFD simulation by …


The Development And Numerical Modelling Of A Representative Elemental Volume For Packed Sand, Ashraf Thabet Sep 2017

The Development And Numerical Modelling Of A Representative Elemental Volume For Packed Sand, Ashraf Thabet

Electronic Thesis and Dissertation Repository

The motivation of this thesis is the development of simple microscopic-scale model (representative elemental volume; REV) that can be used to conduct flow and heat transfer simulations from which closure coefficients can be established for the volume-averaged transport equations for porous media (packed bed). The thesis provides a brief introduction to the computational technique adopted for the geometric generation of the REV (YADE), followed by a parametric study undertaken to reveal the minimum number of particles inside the REV that are required to mimic the appropriate physics. Additional analysis was conducted with the goal of determining the influence of deviation …


Applications Of Cfd Simulations On Chemical Processing Equipment Designs, Gongqiang He Aug 2017

Applications Of Cfd Simulations On Chemical Processing Equipment Designs, Gongqiang He

LSU Doctoral Dissertations

The objective of this work is to achieve process intensification by seeking optimal equipment design with CFD investigations. In this work, two projects on chemical equipment design have been discussed.

The first project is on design and optimization of fractal distributor in a novel ion-exchanger. Flow distributors are adopted extensively by chemical industry to distribute an incoming process stream uniformly to the downstream equipment. Currently, the performance of chemical equipment installed with conventional distributor is severely undermined due to poor flow distribution. For conventional distributors such as spray nozzle distributors, their design concept is based on maintaining very high pressure …


Design And Validation Of Pressure Based Flow Rate Soft Sensor For Freeze-Drying, Pasita Pibulchinda, Tong Zhu, Vaibhav Kshirsagar, Alina A. Alexeenko Aug 2017

Design And Validation Of Pressure Based Flow Rate Soft Sensor For Freeze-Drying, Pasita Pibulchinda, Tong Zhu, Vaibhav Kshirsagar, Alina A. Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lyophilization or freeze drying is a process of removing water by sublimation. It is commonly used to extend the shelf life of drugs in the pharmaceutical industry. Because the process is costly and time consuming, precise and efficient pressure, temperature control and drying time estimation are required. It is the goal of freeze-drying to run at maximum capacity while staying within the safe zone by carefully controlling the sublimation rate. Currently, real time estimation of sublimation rate is still challenging. The technique available called Tunable diode laser absorption spectroscopy (TDLAS) is invasive, and requires major modifications. The current study focuses …


Cfd Performance Of Turbulence Models For Flow From Supersonic Nozzle Exhausts, Han Ju Lee Aug 2017

Cfd Performance Of Turbulence Models For Flow From Supersonic Nozzle Exhausts, Han Ju Lee

McKelvey School of Engineering Theses & Dissertations

The goal of this thesis is to compare the performance of several eddy-viscosity turbulence models for computing supersonic nozzle exhaust flows. These flows are of relevance in the development of future supersonic transport airplane. Flow simulations of exhaust flows from three supersonic nozzles are computed using ANSYS Fluent. Simulation results are compared to experimental data to assess the performance of various one- and two-equation turbulence models for accurately predicting the supersonic plume flow. One particular turbulence model of interest is the Wray-Agarwal (WA) turbulence model. This is a neat model which has demonstrated promising results mimicking the strength of two …


A Computational Study Of Diesel And Diesel-Methane Dual Fuel Combustion In A Single-Cylinder Research Engine, Prabhat Ranjan Jha Aug 2017

A Computational Study Of Diesel And Diesel-Methane Dual Fuel Combustion In A Single-Cylinder Research Engine, Prabhat Ranjan Jha

Theses and Dissertations

Dual fuel combustion is one strategy to achieve low oxides of nitrogen and soot emissions while maintaining the fuel conversion efficiency of IC engines. However, it also suffers from high engine-out carbon monoxide and unburned hydrocarbon emissions, and the incidence of knock at high loads. The present work focused on CFD simulation of diesel-methane dual fuel combustion in a single-cylinder research engine (SCRE). For pure diesel combustion, a load sweep of 2.5 bar brake mean effective pressure (BMEP) to 7.5 bar BMEP was performed at a constant engine speed of 1500 rpm and a diesel injection pressure of 500 bar. …


A Study Of Development Of A Micro Hydro Turbine System With A Rim Drive And Air Injection Treatment For Cavitation., Tomoki Sakamoto Aug 2017

A Study Of Development Of A Micro Hydro Turbine System With A Rim Drive And Air Injection Treatment For Cavitation., Tomoki Sakamoto

Theses and Dissertations

This thesis presents the study of Kaplan hydro turbines system at a very low head and air injection treatment to reduce cavitation happening around a turbine. Regarding the study of Kaplan hydroturbine system, optimization of hydro turbine system with a rim generator to gain a better performance was conducted by CFD and experiment. E-Motors, the partner of this research, is developing an integrated design to simplify manufacturing and installation. The integrated design includes a rim in the outside of the turbine runner to house the electrical generator rotor, namely rim drive. This approach enables a compact and simple assembly without …


Instrument Design Optimization With Computational Methods, Michael H. Moore Jul 2017

Instrument Design Optimization With Computational Methods, Michael H. Moore

Physics Theses & Dissertations

Using Finite Element Analysis to approximate the solution of differential equations, two different instruments in experimental Hall C at the Thomas Jefferson National Accelerator Facility are analyzed. The time dependence of density fluctuations from the liquid hydrogen (LH2) target used in the Qweak experiment (2011-2012) are studied with Computational Fluid Dynamics (CFD) and the simulation results compared to data from the experiment. The 2.5 kW liquid hydrogen target was the highest power LH2 target in the world and the first to be designed with CFD at Jefferson Lab. The first complete magnetic field simulation of the Super High Momentum …


Numerical Drag Prediction Of Nasa Common Research Models Using Different Turbulence Models, Pan Du May 2017

Numerical Drag Prediction Of Nasa Common Research Models Using Different Turbulence Models, Pan Du

McKelvey School of Engineering Theses & Dissertations

The goal of this research is to perform 3D turbulence flow simulations to predict the drag of Wing-body-tail (WBT) and Wing-body-nacelle-Pylon (WBNP) aircraft configurations from NASA Common Research Models. These configurations are also part of the 4th and 6th AIAA Drag Prediction Workshops in which CFD modelers have participated worldwide. The computations are performed using CFD solver ANSYS FLUENT. The compressible Reynolds-Averaged Navier-Stokes (RANS) equations are solved using two turbulence models – the Spalart-Allmaras (SA) and SST k-ω. Drag polar and drag rise curves are obtained by performing computations at different angles of attack at a constant Mach number. Pressure …


Cfd Simulations Of Chemical Looping Combustion In A Packed Bed And A Bubbling Bed Fuel Reactor, Guanglei Ma May 2017

Cfd Simulations Of Chemical Looping Combustion In A Packed Bed And A Bubbling Bed Fuel Reactor, Guanglei Ma

McKelvey School of Engineering Theses & Dissertations

Chemical-looping combustion (CLC) is a next generation combustion technology that has shown great promise in addressing the need for high-efficiency low-cost carbon capture from fossil fueled power plants to address the rising carbon emissions. Although there have been a number of experimental studies on CLC in recent years, CFD simulations have been limited in the literature on CLC. The development and confidence in high-fidelity simulations of the CLC process is a necessary step towards facilitating the transition from laboratory-scale experiments to deployment of this technology on an industrial scale. In this research, first the CFD simulations of a CLC packed …


Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng May 2017

Numerical Study Of The Aerodynamics Of Dlr-F6 Wing-Body In Unbounded Flow Field And In Ground Effect, Ning Deng

McKelvey School of Engineering Theses & Dissertations

The main focus of this thesis is on the simulation of flow past a three-dimensional wing-body configuration (DLR-F6) in ground effect; a complex 3D wing-body configuration in ground effect has never been analyzed in the aerodynamics literature to date. For the purpose of validation of the simulation approach, computations are performed for the DLR-F6 wing-body in unbounded flow and are compared with the experimental data. The commercial CFD solver ANSYS FLUENT is employed for computations. Compressible Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with Spalart-Allmaras (SA) and - Shear Stress Transport (SST) turbulence models are solved. The validated code is employed …


Investigation Of The Capability Of A Computational Fluid Dynamics Code For Low Reynolds Number Propeller, Naoufal Harich May 2017

Investigation Of The Capability Of A Computational Fluid Dynamics Code For Low Reynolds Number Propeller, Naoufal Harich

Theses and Dissertations

The amount of research and publication on low Reynolds number propellers has increased recently, especially because of the high number of UAVs produced during the past years. The use of CFD on propellers has been focused primarily on commercial propellers, propfans, and general aviation propellers. The aim of this work is to use a CFD code designed mainly for large scale (i.e. high Reynolds number) propellers to compute the performance characteristics of a low Reynolds number propeller and then compare those results with another software product that has been used more for low Reynolds number propellers.


Performance Investigation Of Three Combined Airfoils Bladed Small Scale Horizontal Axis Wind Turbine By Bem And Cfd Analysis, Md Mehedi Hasan, Adel El-Shahat, Mosfequr Rahman May 2017

Performance Investigation Of Three Combined Airfoils Bladed Small Scale Horizontal Axis Wind Turbine By Bem And Cfd Analysis, Md Mehedi Hasan, Adel El-Shahat, Mosfequr Rahman

Department of Electrical & Computer Engineering Faculty Research & Publications

The present work is based on the comparative study between “Blade-Element- Momentum” (BEM) analysis and “Computational-Fluid-Dynamics” (CFD) analysis of small-scale horizontal axis wind turbine blade. In this study, the pitch is considered as fixed and rotor speed is variable. Firstly, the aerodynamic characteristics of three different specialized airfoils were analyzed to get optimum design parameters of wind turbine blade. Then BEM was performed with the application of the open source wind turbine design and performance computation software Q-Blade v0.6. After that, CFD simulation was done by Ansys CFX software. Here, k-ω “Shear-Stress-Transport” (SST) model was conducted for three-dimensional visualization of …


A Numerical Study Of The Limiting Cases Of Cylinder-Induced Shock Wave/Boundary Layer Interactions, Stefen Albert Lindorfer May 2017

A Numerical Study Of The Limiting Cases Of Cylinder-Induced Shock Wave/Boundary Layer Interactions, Stefen Albert Lindorfer

Masters Theses

One of the limiting factors in the design of supersonic and hypersonic vehicles remains the prediction and control of the high aerodynamic, thermodynamic, acoustic, and structural loads generated by a shock wave/boundary layer interaction (SWBLI or SBLI). In conjunction with an experimental campaign produced within the research group, a numerical study was performed using a semi-infinite cylinder to generate a SWBLI at Mach 1.88 with both laminar and turbulent boundary layers. The goals were not only to better understand the complex flow surrounding the cylinder-induced turbulent interaction, but also to establish the interaction bounds of the limiting cases of a …


Evaluation Of Flux Correction On Three-Dimensional Strand Grids With An Overset Cartesian Grid, Dalon G. Work May 2017

Evaluation Of Flux Correction On Three-Dimensional Strand Grids With An Overset Cartesian Grid, Dalon G. Work

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Simulations of fluid flows over complex geometries are typically solved using a solution technique known as the overset meshing method. The geometry is meshed using grid types appropriate to the local geometry in a patchwork fashion, rather than meshing the entire geometry with one type of mesh. The strand-Cartesian approach is a simplification of this process. While high-order accurate solvers on Cartesian grids are simple to implement, strand grids are usually restricted to second-order accuracy, resulting in poor quality solutions. Flux correction is a high-order accurate solution method, specifically designed for use on strand grids. The flux correction method on …


Effects Of Heat Transfer On Vehicle Front-End Cooling Airflow Simulation, Stefan Tojcic Apr 2017

Effects Of Heat Transfer On Vehicle Front-End Cooling Airflow Simulation, Stefan Tojcic

Electronic Theses and Dissertations

This research focuses on virtual simulation techniques for vehicle underhood airflow. The main objective is to gain a better understanding of heat transfer effects on vehicle underhood cooling airflow and provide correction methods to increase the accuracy of simulations early in the vehicle development phase. Simulations are carried out for a stand-alone radiator setup, based on three different flow assumptions; constant density iso-thermal, constant density with heat transfer, and variable density with heat transfer. It was observed that, in some cases, corrected heat exchanger porous resistance terms need to be adopted for each simulation case in order to provide good …


Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane Apr 2017

Development Of An Analysis And Design Optimization Framework For Marine Propellers, Ashish C. Tamhane

Mechanical & Aerospace Engineering Theses & Dissertations

In this thesis, a framework for the analysis and design optimization of ship propellers is developed. This framework can be utilized as an efficient synthesis tool in order to determine the main geometric characteristics of the propeller but also to provide the designer with the capability to optimize the shape of the blade sections based on their specific criteria.

A hybrid lifting-line method with lifting-surface corrections to account for the three-dimensional flow effects has been developed. The prediction of the correction factors is achieved using Artificial Neural Networks and Support Vector Regression. This approach results in increased approximation accuracy compared …


Effect Of Design Parameters On Thermal Performance Of A Vane Type Disc Brake Rotor, Yogesh Satish Dalal Apr 2017

Effect Of Design Parameters On Thermal Performance Of A Vane Type Disc Brake Rotor, Yogesh Satish Dalal

Masters Theses

The ever-increasing need of effective transportation puts automobile manufacturers in a situation of continuous improvement and innovate the safety systems. The brake system of an automobile has always been considered as one of the most critical active safety systems. Thermal characteristics of the brake are an important aspect to consider for brake disc durability and performance. The convective cooling of a brake disc is an important factor since design changes in the brake rotor can significantly improve cooling characteristics. The focus of this research is to study and optimize the disc brake rotor for a given heat dissipation rate and …


Model-Assisted Measurements Of Suspension-Feeding Flow Velocities, Kevin T. Du Clos, Ian T. Jones, Tyler J. Carrier, Damian C. Brady, Peter A. Jumars Mar 2017

Model-Assisted Measurements Of Suspension-Feeding Flow Velocities, Kevin T. Du Clos, Ian T. Jones, Tyler J. Carrier, Damian C. Brady, Peter A. Jumars

Miscellaneous Publications

Benthic marine suspension feeders provide an important link between benthic and pelagic ecosystems. The strength of this link is determined by suspension-feeding rates. Many studies have measured suspension-feeding rates using indirect clearance-rate methods, which are based on the depletion of suspended particles. Direct methods that measure the flow of water itself are less common, but they can be more broadly applied because, unlike indirect methods, direct methods are not affected by properties of the cleared particles. We present pumping rates for three species of suspension feeders, the clams Mya arenaria and Mercenaria mercenaria and the tunicate Ciona intestinalis, measured …


Numerical Simulation Of Air Flow In Aeroengine Compressors, Shady Mohamed Mohamed Ali Jan 2017

Numerical Simulation Of Air Flow In Aeroengine Compressors, Shady Mohamed Mohamed Ali

Electronic Thesis and Dissertation Repository

The performance of an aeroengine is influenced by the performance of the compressor system. A typical compressor consists of multistage axial compressors followed by a centrifugal stage. Here, a high-speed centrifugal and an axial stage are investigated in terms of turbulence modelling, flow blockage and rotor-stator (R-S) gap using the commercial software ANSYS CFX. The curvature corrected Shear stress transport (SST-CC) model of Smirnov and Menter is investigated for the first time in a high-speed centrifugal stage in terms of curvature and rotation effects. The SST-CC predictions are compared with the standard SST, Speziale, Sarkar, and Gatski Reynolds stress model …