Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2011

Nanotechnology

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 53

Full-Text Articles in Entire DC Network

Dna Electrophoretic Migration Patterns Change After Exposure Of Jurkat Cells To A Single Intense Nanosecond Electric Pulse, Stefania Romeo, Luigi Zeni, Maurizio Sarti, Anna Sannino, Maria Rosaria Scarfi, P. Thomas Vernier, Olga Zeni Dec 2011

Dna Electrophoretic Migration Patterns Change After Exposure Of Jurkat Cells To A Single Intense Nanosecond Electric Pulse, Stefania Romeo, Luigi Zeni, Maurizio Sarti, Anna Sannino, Maria Rosaria Scarfi, P. Thomas Vernier, Olga Zeni

Bioelectrics Publications

Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and …


Under The Dome - Fall 2011, Mckissick Museum--University Of South Carolina Oct 2011

Under The Dome - Fall 2011, Mckissick Museum--University Of South Carolina

Under the Dome, McKissick Museum Newsletter

Contents:

Imaging the Invisible.....p. 1
Showing Your Mettle.....p. 2
McKissick Digitizes with New Technology: Arius3D Scanner.....p. 2
What's New at McKissick.....p. 3
Museum Receives Federal Grant for Natural Science.....p. 3
Current Students & Alumni News.....p. 3
The Ultimate Vacation: Watching Other People Work.....p. 4
Upcoming Events.....p. 4


Public Policy Instruments In (Re)Building National Innovation Capabilities: Cases Of Nanotechnology Development In China, Russia And Brazil, Evgeny A. Klochikhin Sep 2011

Public Policy Instruments In (Re)Building National Innovation Capabilities: Cases Of Nanotechnology Development In China, Russia And Brazil, Evgeny A. Klochikhin

Evgeny A. Klochikhin

In 2001 Goldman Sachs named Brazil, Russia, India and China (BRICs) the most rapidly-growing countries in the world capable of surpassing the United States, Japan and Europe as leading economies by 2050.

Nevertheless, for the last decade we have learned relatively little about the mechanisms of success and failure in these countries. All of them have huge territory and population as well as fast-growing economies that sometimes show two-digit rates of GDP growth per year and surprise the world by their increasing budgets and public spending. In the meantime, most of these countries are believed to be desperately struggling against …


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as a …


Plasmonic Nanogels With Robustly Tunable Optical Properties, Tao Cong, Satvik N. Wani, Georo Zhou, Elia Baszczuk, Radhakrishna Sureshkumar Aug 2011

Plasmonic Nanogels With Robustly Tunable Optical Properties, Tao Cong, Satvik N. Wani, Georo Zhou, Elia Baszczuk, Radhakrishna Sureshkumar

Biomedical and Chemical Engineering - All Scholarship

Low viscosity fluids with tunable optical properties can be processed to manufacture thin film and interfaces for molecular detection, light trapping in photovoltaics and reconfigurable optofluidic devices. In this work, self-assembly in wormlike micelle solutions is used to uniformly distribute various metallic nanoparticles to produce stable suspensions with localized, multiple wavelength or broad-band optical properties. Their spectral response can be robustly modified by varying the species, concentration, size and/or shape of the nanoparticles. Structure, rheology and optical properties of these plasmonic nanogels as well as their potential applications to efficient photovoltaics design are discussed.


Going Virtual: Delivering Nanotechnology Safety Education On The Web, Dominick E. Fazarro, Heshium R. Lawrence, Rochell R. Mcwhorter Aug 2011

Going Virtual: Delivering Nanotechnology Safety Education On The Web, Dominick E. Fazarro, Heshium R. Lawrence, Rochell R. Mcwhorter

Human Resource Development Faculty Publications and Presentations

The emergence of nanotechnology has created new challenges for the 21st century. Future development of Engineered Nano Materials (ENMs) will soon impact society in ways never imagined before. Most importantly, those who develop and work with ENMs must understand the importance of worker safety. Educators must use creative and innovative ways to educate Generation ‘Y’ to develop a competent nano workforce. We posit that the use of virtual environments in education may be the conduit between Generation ‘Y’s technology connectedness and the teaching of nanotechnology safety education effectively, and cite an example of teaching nanotechnology safety education in a virtual …


Single-Step Biofriendly Synthesis Of Surface Modifiable, Near-Spherical Gold Nanoparticles For Applications In Biological Detection And Catalysis, Vivek D. Badwaik Aug 2011

Single-Step Biofriendly Synthesis Of Surface Modifiable, Near-Spherical Gold Nanoparticles For Applications In Biological Detection And Catalysis, Vivek D. Badwaik

Masters Theses & Specialist Projects

There is an increased interest in understanding the toxicity and rational design of gold nanoparticles (GNPs) for biomedical applications in recent years. Such efforts warrant reliable, viable, and biofriendly synthetic methodology for GNPs with homogeneous sizes and shapes, particularly sizes above 30 nm, which is currently challenging. In the present study, an environmentally benign, biofriendly, singlestep/ single-phase synthetic method using dextrose as a reducing and capping agent in a buffered aqueous solution at moderate temperature is introduced. The resulting GNPs are near-spherical, stable, catalytically active, place exchangeable, and water-soluble within the size range of 10-120 nm. The added advantage of …


Electrochemically-Fabricated Metal Nanostructures For Sensing, Resistive Switching, Raman Enhancement, And Making Contact To Molecular Junctions., Radhika Dasari Aug 2011

Electrochemically-Fabricated Metal Nanostructures For Sensing, Resistive Switching, Raman Enhancement, And Making Contact To Molecular Junctions., Radhika Dasari

Electronic Theses and Dissertations

The research in this dissertation describes a simple electrochemical approach for fabricating nanoscale (metal/metal) or molecular (metal/polymer or self assembled monolayer (SAM)/metal) junctions. The fabrication involves metal deposition on one set of electrodes (El), where the metal grows and becomes connected to a second set of electrodes (E2) of an Au interdigitated array of electrodes with a 5 11m separation. The fabrication of molecular junctions involves deposition of a thin polymer or self assembled monolayer film on one set of electrodes (E2) prior to metal deposition on the other set of electrodes (El). The method is simple, low cost, highly …


Development Of A Flexible Load-Based Micro-Indentation System, Chia-Nung Chou Aug 2011

Development Of A Flexible Load-Based Micro-Indentation System, Chia-Nung Chou

Graduate Theses, Dissertations, and Problem Reports

Various types of indentation methods have been used for the determination of mechanical properties of material; nevertheless, conventional indentation test units are restricted by the geometry of the samples. It is difficult to obtain the mechanical properties from non-flat surface objects. In this research, based on an in-house developed load-based micro-indentation test method, a suitable flexible micro-indentation system was developed to determine material mechanical properties such as hardness and elastic modulus of test samples with arbitrary surface geometry.;The focus is in developing a flexible micro-indentation unit. Due to nonlinearity of the system compliance and possible change of indentation direction during …


The Electrochemical Detection Of Interleukin-8, Cancer Biomarker, Based On A Gold Nanoparticle Platform And Its Political Implications, Jaimee Doucette Jul 2011

The Electrochemical Detection Of Interleukin-8, Cancer Biomarker, Based On A Gold Nanoparticle Platform And Its Political Implications, Jaimee Doucette

Pell Scholars and Senior Theses

Herein we report on an ultrasensitive immunosensor based on glutathione protected gold nanoparticle (GSH-AuNP) for the electrochemical detection of interleukin 8 (IL-8), cancer biomarker in calf serum and proof of concept IL-8 detection in HNSCC cells. GSH-AuNP were bioconjugated to the primary antibodies (Ab1) and used to capture human IL-8 in a sandwich electrochemical immunoassay coupled to horseradish peroxidase enzyme labels. Using the optimized concentrations of the primary (Ab1) and secondary antibodies (Ab2), two sensor approaches were used to measure ultra low (≤ 500 fg mL-1) and elevated levels of IL-8. Biotinylated Ab2 bound to streptavidin HRP with 14-16 labels …


Thinking About How To Best Form Scientists: Incorporating Toxicology, Public And Environmental Health Risks Into The Curriculum, Laura Deakin Jul 2011

Thinking About How To Best Form Scientists: Incorporating Toxicology, Public And Environmental Health Risks Into The Curriculum, Laura Deakin

The Western Conference on Science Education

Like ourselves, our students are interested in the risks presented by chemicals or materials on human health or the health of the environment. But are our science graduates well-formed to take part in issues that confront the public? What of fluoridation, bisphenol-A, and aromatic hydrocarbons from Alberta’s oil sands? For the students in fields where they may work with high toxicity substances, we as instructors have an obligation. These students need to be able to understand the exposure, reactivity, and effects of the substances they may be manipulating daily. With that understanding they are well armed to best protect themselves; …


Synthesis And Characterization Of Cdse-Zns Core-Shell Quantum Dots For Increased Quantum Yield, Joshua James Angell Jul 2011

Synthesis And Characterization Of Cdse-Zns Core-Shell Quantum Dots For Increased Quantum Yield, Joshua James Angell

Master's Theses

Quantum dots are semiconductor nanocrystals that have tunable emission through changes in their size. Producing bright, efficient quantum dots with stable fluorescence is important for using them in applications in lighting, photovoltaics, and biological imaging. This study aimed to optimize the process for coating CdSe quantum dots (which are colloidally suspended in octadecene) with a ZnS shell through the pyrolysis of organometallic precursors to increase their fluorescence and stability. This process was optimized by determining the ZnS shell thickness between 0.53 and 5.47 monolayers and the Zn:S ratio in the precursor solution between 0.23:1 and 1.6:1 that maximized the relative …


Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz Jul 2011

Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz

Faculty Publications

Nanotechnology has opened a wide range of opportunities having potential impacts in areas as diverse as medicine and consumer products. In collaboration with researchers at the University of Toledo UT, Air Force Institute of Technology AFIT scientists are exploring the possibility of using a nanoscale organic matrix to detect organophosphate OP nerve agents. Current techniques for detecting OP compounds are expensive and time consuming. Developing a nanoscale organic matrix sensor would allow for direct, real-time sensing under field conditions. This article describes the science behind such a sensor and its possible applications. High-performance sensors are needed to protect Soldiers and …


Growth Direction Modulation And Diameter-Dependent Mobility In Inn Nanowires, Goutam Koley, Zhihua Cai, Ehtesham Bin Quddus, Jie Liu, Muhammad Qazi, Richard A. Webb Jun 2011

Growth Direction Modulation And Diameter-Dependent Mobility In Inn Nanowires, Goutam Koley, Zhihua Cai, Ehtesham Bin Quddus, Jie Liu, Muhammad Qazi, Richard A. Webb

Faculty Publications

Diameter-dependent electrical properties of InN nanowires (NWs) grown by chemical vapor deposition have been investigated. The NWs exhibited interesting properties of coplanar deflection at specific angles, either spontaneously, or when induced by other NWs or lithographically patterned barriers. InN NW-based back-gated field effect transistors (FETs) showed excellent gate control and drain current saturation behaviors. Both NW conductance and carrier mobility calculated from the FET characteristics were found to increase regularly with a decrease in NW diameter. The observed mobility and conductivity variations have been modeled by considering NW surface and core conduction paths.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Dattatri K. Nagesha

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Latika Menon

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Jun 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Ahmed A. Busnaina

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci Jun 2011

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Ahmed A. Busnaina

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Ahmed A. Busnaina

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Nanotechnology Policy In Russia: Can An Emerging Technology Push A Country Onto A New Development Trajectory?, Evgeny A. Klochikhin Jun 2011

Nanotechnology Policy In Russia: Can An Emerging Technology Push A Country Onto A New Development Trajectory?, Evgeny A. Klochikhin

Evgeny A. Klochikhin

In 2001 Goldman Sachs predicted that a group of emerging markets – Brazil, Russia, India and China – will surpass leading economies by 2050. Nevertheless, we seem to have studied little about the mechanisms of success and failure in these countries in the recent decade. In this paper I focus on one of these giants – Russia – which seems seriously understudied but retains important creative and science and technology potential capable of pushing the country onto a new development trajectory.

Russia sees nanotechnology as one of the major technological platforms that could help it achieve the established growth objectives. …


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Nicol E. McGruer

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Yung Joon Jung

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Yung Joon Jung

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci May 2011

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.


Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier F. Casse, Ravinder K. Banyal, W. T. Lu, Y. J. Huang, Selvapraba Selvarasah, Mehmet R. Dokmeci, Srinivas Sridhar May 2011

Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier F. Casse, Ravinder K. Banyal, W. T. Lu, Y. J. Huang, Selvapraba Selvarasah, Mehmet R. Dokmeci, Srinivas Sridhar

Mehmet R. Dokmeci

We show that a binary-staircase optical element can be engineered to exhibit an effective negative index of refraction, thereby expanding the range of optical properties theoretically available for future optoelectronic devices. The mechanism for achieving a negative-index lens is based on exploiting the periodicity of the surface corrugation. By designing and nanofabricating a planoconcave binary-staircase lens in the InP/InGaAsP platform, we have experimentally demonstrated at 1.55 μm that such negative-index concave lenses can focus plane waves. The beam propagation in the lens was studied experimentally and was in excellent agreement with the three-dimensional finite-difference time-domain numerical simulations.


Design And Development Of Nanoconjugates For Nanotechnology, Ashley Dung Quach May 2011

Design And Development Of Nanoconjugates For Nanotechnology, Ashley Dung Quach

University of New Orleans Theses and Dissertations

Nanotechnology builds devices from the bottom up with atomic accuracy. Among the basic nano-components to fabricate such devices, semiconductor nanoparticle quantum dots (QDs), metal nanocrystals, proteins, and nucleic acids have attracted most interests due to their potential in optical, biomedical, and electronic areas. The major objective of this research was to prepare nano-components in order to fabricate functional nano-scale devices. This research consisted of three projects. In the first two projects, we incorporated two desirable characteristics of QDs, which are their abilities to serve as donors in fluorescence energy transfer (FRET) and surface energy transfer (SET) as well as to …


Zinc Oxide Nanoparticles As Potential Novel Anticancer Therapies, Janet C. Layne May 2011

Zinc Oxide Nanoparticles As Potential Novel Anticancer Therapies, Janet C. Layne

Boise State University Theses and Dissertations

Nanoparticles (NP) are increasingly being recognized for their utility in the field of medicine, including use as drug carriers and imaging tools. We demonstrated that ZnO NP preferentially kill cancerous cells of the T cell lineage, and extended this research to evaluate other cells types, including normal and malignant B cells, and normal and malignant breast and prostate epithelial cells. Preferential ZnO nanoparticle cytotoxicity occurred for multiple types of cancer cells, but was most pronounced for non-adherent cells of hematopoietic lineage. Normal T and B lymphocytes showed the greatest resistance to NP toxicity, followed by normal breast epithelial cells, and …


Functionalization Of Buckled Graphene, Timothy C. Nelson May 2011

Functionalization Of Buckled Graphene, Timothy C. Nelson

Graduate Theses, Dissertations, and Problem Reports

Buckled graphene produced by the halogen based etching of 6H-SiC provides a new route for the functionalization of the graphene surface. This surface provides an important new stepping off point in the development of molecular electronics and sensors. While the graphene surface is relatively inert, the fluorinated defect sites inherent in the buckled graphene surface yield an excellent location for chemical reactions such as nucleophilic substitution. This thesis shows the utility of the fluorinated defect sites through the well characterized diazonium reaction.;Buckled graphene films were prepared on silicon carbide substrates using inductively coupled plasma and reactive ion etching, and annealed …


A Model Study Of Adlayer Pattern Formation Of A Linear Molecule On Square And Triangular Lattices, Gennadiy N. Berezutskiy Jan 2011

A Model Study Of Adlayer Pattern Formation Of A Linear Molecule On Square And Triangular Lattices, Gennadiy N. Berezutskiy

Master's Theses and Capstones

We have determined patterning and geometric properties of rigid-diatomic-molecular rotors, fixed on (square and triangular) the lattice site modeled by the Morse potential. Zero-K adlayer patterns were enhanced through the implementation of unconstrained multivariable function using derivative-free method (also known as simplex algorithm). Results have been obtained over wide geometry range for adlayer patterns composed of periodically repeated primary cell.

A primary focus of this work was the calculation of adlayer free energies and geometry at the ground state. Those were obtained from conformational search of the primary (2x2) cell to locate geometric configuration, which minimizes the total energy. The …