Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Biochemical Investigations Of Macular Degeneration: The Significance Of Protein Oxidation Including Novel Methods For Its Study, Sarah Warburton Nov 2006

Biochemical Investigations Of Macular Degeneration: The Significance Of Protein Oxidation Including Novel Methods For Its Study, Sarah Warburton

Theses and Dissertations

The retinal pigment epithelium (RPE) is a monolayer of cells located directly behind the photoreceptor cells in the retina. These cells are involved in a variety of functions that support the visual process in the eye, namely 1) they form a blood-retina barrier which separates the neural retina from the choroid's blood supply, 2) the apical processes of RPE cells diurnally phagocytose the outer segments of photoreceptor cells, and 3) they participate in the renewal of the photopigment 11-cis retinal. Age-related macular degneration (AMD) is the leading cause of blindness in people over the age of 50 years in North …


The Structure And Function Of Frataxin, Krisztina Z. Bencze, Kalyan C. Kondapalli, Jeremy D. Cook, Stephen Mcmahon, César Millán-Pacheco, Nina Pastor, Timothy L. Stemmler Oct 2006

The Structure And Function Of Frataxin, Krisztina Z. Bencze, Kalyan C. Kondapalli, Jeremy D. Cook, Stephen Mcmahon, César Millán-Pacheco, Nina Pastor, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

Frataxin, a highly conserved protein found in prokaryotes and eukaryotes, is required for efficient regulation of cellular iron homeostasis. Humans with a frataxin deficiency have the cardio- and neurodegenerative disorder Friedreich’s ataxia, commonly resulting from a GAA trinucleotide repeat expansion in the frataxin gene. While frataxin’s specific function remains a point of controversy, a general consensus is the protein assists in controlling cellular iron homeostasis by directly binding iron. This review focuses on the structural and biochemical aspects of iron binding by the frataxin orthologs and outlines molecular attributes that may help explain the protein’s role in different cellular pathways.


Three-Dimensional Structure Of The Bacterial Cell Wall Peptidoglycan, Samy O. Meroueh, Krisztina Z. Bencze, Dusan Hesek, Mijoon Lee, Timothy L. Stemmler, Shahriar Mobashery Mar 2006

Three-Dimensional Structure Of The Bacterial Cell Wall Peptidoglycan, Samy O. Meroueh, Krisztina Z. Bencze, Dusan Hesek, Mijoon Lee, Timothy L. Stemmler, Shahriar Mobashery

Biochemistry and Molecular Biology Faculty Publications

The 3D structure of the bacterial peptidoglycan, the major constit- uent of the cell wall, is one of the most important, yet still unsolved, structural problems in biochemistry. The peptidoglycan comprises alternating N-acetylglucosamine (NAG) and N-acetylmu- ramic disaccharide (NAM) saccharides, the latter of which has a peptide stem. Adjacent peptide stems are cross-linked by the transpeptidase enzymes of cell wall biosynthesis to provide the cell wall polymer with the structural integrity required by the bacte- rium. The cell wall and its biosynthetic enzymes are targets of antibiotics. The 3D structure of the cell wall has been elusive because of its …


Monosaccharide Interactions With Rh(Iii) Cis-Bipyridine Complexes, Sarah M. Lane Jan 2006

Monosaccharide Interactions With Rh(Iii) Cis-Bipyridine Complexes, Sarah M. Lane

Undergraduate Review

No abstract provided.