Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2006

Iowa State University

Biophysics

Molecular Biology

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

An Examination Of Hexacoordinate Hemoglobins Using The Techniques Of Biochemistry, Biophysics And Molecular Biology , James Thomas Trent Iii Jan 2006

An Examination Of Hexacoordinate Hemoglobins Using The Techniques Of Biochemistry, Biophysics And Molecular Biology , James Thomas Trent Iii

Retrospective Theses and Dissertations

Hexacoordinate hemoglobins are found in a truly diverse array of organisms, ranging from cyanobacteria to humans. The prevalence of these proteins in nature coupled with very high sequence identity between species homologues suggests they have a role vital to life. The high sequence identity also implies that hxHb structural features, including the hexacoordination phenomenon, are critical aspects of the physiological function. A detailed understanding of the ligand binding behavior of these proteins will not only facilitate efforts towards discovering their physiological role(s), but will also help explain how hxHbs perform their function. This dissertation consists of four published papers ...


Genetic And Molecular Analysis Of Starch Synthases Functions In Maize And Arabidopsis , Xiaoli Zhang Jan 2006

Genetic And Molecular Analysis Of Starch Synthases Functions In Maize And Arabidopsis , Xiaoli Zhang

Retrospective Theses and Dissertations

Understanding the specific functions played by individual starch synthase isoforms in maize and Arabidopsis will provide important evidence for how highly organized starch structure is made. Starch synthases (SS) catalyze the transfer of the glucosyl moiety from ADP-Glc to the terminus of a growing alpha-(1, 4)-linked glucan linear chain. At least five classes of SSs are identified in higher species, referred to as GBSS, SSI, SSII, SSIII, and SSIVN. They have high similarity in the catalytic and starch-binding domains of the C-termini but differ at their N-termini. All of these enzymes are highly conserved in plant kingdom, which ...