Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

Posterminaries: After Nabarro, Alexander H. King Nov 2006

Posterminaries: After Nabarro, Alexander H. King

Alexander H. King

With the passing of Frank Nabarro in July of this year, we have lost one of the founding fathers of materials science. His name appears in many of the textbooks from which we train our students today, and also on the spines of several volumes on dislocation theory, including his classic monograph on the subject. He rightly stands among the gods of our field. Ninety years old at his death, he was a sprightly dancer at the frontiers of knowledge, right up to the end.


Posterminaries: The Scales Of Judgement, Alexander H. King Sep 2006

Posterminaries: The Scales Of Judgement, Alexander H. King

Alexander H. King

Materials scientists are generally well-versed in physics, and physics, above all, is a science of measurements. The first instinct of a physicist is to parse a problem in terms of its measurables in the dimensions of mass, length, and time, and it is the shifting of attention down the scale of length that particularly characterizes our present times as the Nano Age.


Posterminaries: Plain Text, Alexander H. King Jan 2006

Posterminaries: Plain Text, Alexander H. King

Alexander H. King

You just can’t win an argument with an English professor.


Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman Jan 2006

Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman

Alexander H. King

Thermal effects on domain orientation in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated by using in situ x-ray diffraction with an area detector. In the case of a soft PZT, it is found that the texture parameter called multiples of a random distribution (MRD) initially increases with temperature up to approximately 100 °C and then falls to unity at temperatures approaching the Curie temperature, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. The relationship between the mechanical strain energy and domain wall mobility with temperature is discussed.