Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Analysis Of Two-Dimensional Photoelectron Momentum Spectra And The Effect Of The Long-Range Coulomb Potential In Single Ionization Of Atoms By Intense Lasers, Zhangjin Chen, Toru Morishita, Anh-Thu Le, M. Wickenhauser, X. M. Tong, C. D. Lin Nov 2006

Analysis Of Two-Dimensional Photoelectron Momentum Spectra And The Effect Of The Long-Range Coulomb Potential In Single Ionization Of Atoms By Intense Lasers, Zhangjin Chen, Toru Morishita, Anh-Thu Le, M. Wickenhauser, X. M. Tong, C. D. Lin

Physics Faculty Research & Creative Works

Two-dimensional (2D) electron momentum distributions and energy spectra for multiphoton ionization of atoms by intense laser pulses, calculated by solving the time-dependent Schrödinger equation (TDSE) for different wavelengths and intensities, are compared to those predicted by the strong-field approximation (SFA). It is shown that the momentum spectra at low energies between the TDSE and SFA are quite different and the differences arise largely from the absence of a long-range Coulomb interaction in the SFA. We further found that the low-energy 2D momentum spectra from the TDSE exhibit ubiquitous fanlike features where the number of stripes is due to a single …


Detectability Of Dissipative Motion In Quantum Vacuum Via Superradiance, Woo-Joong Kim, James Hayden Brownell, Roberto Onofrio May 2006

Detectability Of Dissipative Motion In Quantum Vacuum Via Superradiance, Woo-Joong Kim, James Hayden Brownell, Roberto Onofrio

Dartmouth Scholarship

We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate mechanical energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio- frequency signal temporally distinguishable from the expected background.


Two-Photon Excitation Dynamics In Bound Two-Body Coulomb Systems Including Ac Stark Shift And Ionization, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel, Nikolai N. Kolachevsky, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Th H. Udem, Ronald Holzwarth, Theodor Wolfgang Hansch, Marlan O. Scully, Girish S. Agarwal May 2006

Two-Photon Excitation Dynamics In Bound Two-Body Coulomb Systems Including Ac Stark Shift And Ionization, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel, Nikolai N. Kolachevsky, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Th H. Udem, Ronald Holzwarth, Theodor Wolfgang Hansch, Marlan O. Scully, Girish S. Agarwal

Physics Faculty Research & Creative Works

One of the dominant systematic effects that shift resonance lines in high-precision measurements of two-photon transitions is the dynamic (ac) Stark shift. For suitable laser frequencies, the ac Stark shift acquires an imaginary part which corresponds to the rate of resonant one-photon ionization of electrons into a continuum state. At the current level of spectroscopic accuracy, the underlying time-dependent quantum dynamics governing the atomic two-photon excitation process must be well understood, and related considerations are the subject of the present paper. In order to illustrate the basic mechanisms in the transient regime, we investigate an analytically solvable model scenario for …


Characteristics Of Two-Dimensional Triangular And Three-Dimensional Face-Centered-Cubic Photonic Crystals, Jeffery D. Clark Mar 2006

Characteristics Of Two-Dimensional Triangular And Three-Dimensional Face-Centered-Cubic Photonic Crystals, Jeffery D. Clark

Theses and Dissertations

The fabrication of photonic crystals (PhC) with photonic band gaps (PBG) in the visible range is a difficult task due to the small structural feature sizes of the PhC. The particular type of PhC examined is a two-dimensional (2-D) triangular structure with a PBG designed for visible wavelengths with applications in visible integrated photonic systems. This work examines the processes involved and viability of fabricating 2-D triangular PhC's by a variety of techniques: focused ion beam, electron lithography and holographic photo-polymerization/lithography. The design of the PhC was based on a program created to display gap maps for triangular structures. The …


Photoionization Broadening Of The 1s-2s Transition In A Beam Of Atomic Hydrogen, Nikolai N. Kolachevsky, Martin K. Haas, Ulrich D. Jentschura, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Ronald Holzwarth, Th H. Udem, Christoph H. Keitel, Theodor Wolfgang Hansch Jan 2006

Photoionization Broadening Of The 1s-2s Transition In A Beam Of Atomic Hydrogen, Nikolai N. Kolachevsky, Martin K. Haas, Ulrich D. Jentschura, Maximilian Herrmann, Peter Fendel, Marc P. Fischer, Ronald Holzwarth, Th H. Udem, Christoph H. Keitel, Theodor Wolfgang Hansch

Physics Faculty Research & Creative Works

We consider the excitation dynamics of the two-photon 1S - 2S transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte Carlo simulation, we calculate the line shape of the 1S - 2S transition for the experimental geometry used in the two latest absolute frequency measurements [M. Niering, Phys. Rev. Lett. 84, 5496 (2000) and M. Fischer, Phys. Rev. Lett. 92, 230802 (2004)]. The calculated line shift …