Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Structured Waves Near The Plasma Frequency Observed In Three Auroral Rocket Flights, M Samara, J Labelle Nov 2006

Structured Waves Near The Plasma Frequency Observed In Three Auroral Rocket Flights, M Samara, J Labelle

Dartmouth Scholarship

Abstract. We present observations of waves at and just above the plasma frequency (fpe) from three high frequency electric field experiments on three recent rockets launched to altitudes of 300–900 km in active aurora. The predominant observed HF waves just above fpe are narrowband, short- lived emissions with amplitudes ranging from <1mV/m to 20 mV/m, often associated with structured electron den- sity. The nature of these HF waves, as determined from frequency-time spectrograms, is highly variable: in some cases, the frequency decreases monotonically with time as in the “HF-chirps” previously reported (McAdams and La- Belle, 1999), but in other cases rising frequencies are ob- served, or features which alternately rise and fall in fre- quency. They exhibit two timescales of amplitude variation: a short timescale, typically 50–100 ms, associated with in- dividual discrete features, and a longer timescale associated with the general decrease in the amplitudes of the emissions as the rocket moves away from where the condition f ∼fpe holds. The latter timescale ranges from 0.6 to 6.0 s, corre- sponding to distances of 2–7 km, assuming the phenomenon to be stationary and using the rocket velocity to convert time to distance.


Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe Nov 2006

Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe

Dartmouth Scholarship

We study an rf SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate mechanically. The coupling between the rf SQUID and the mechanical resonator originates from the dependence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter affects the visibility of Rabi oscillations between the two lowest energy states of the rf SQUID. We address the feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility, in such a system.


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Generalized Entanglement As A Natural Framework For Exploring Quantum Chaos, Y. S. Weinstein, L Viola Oct 2006

Generalized Entanglement As A Natural Framework For Exploring Quantum Chaos, Y. S. Weinstein, L Viola

Dartmouth Scholarship

We demonstrate that generalized entanglement (Barnum et al., Phys. Rev. A, 68 (2003) 032308) provides a natural and reliable indicator of quantum chaotic behavior. Since generalized entanglement depends directly on a choice of preferred observables, exploring how generalized entanglement increases under dynamical evolution is possible without invoking an auxiliary coupled system or decomposing the system into arbitrary subsystems. We find that, in the chaotic regime, the long-time saturation value of generalized entanglement agrees with random matrix theory predictions. For our system, we provide physical intuition into generalized entanglement within a single system by invoking the notion of extent …


Enhanced Convergence And Robust Performance Of Randomized Dynamical Decoupling, Lea F. Santos, Lorenza Viola Oct 2006

Enhanced Convergence And Robust Performance Of Randomized Dynamical Decoupling, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

We demonstrate the advantages of randomization in coherent quantum dynamical control. For systems which are either time-varying or require decoupling cycles involving a large number of operations, we find that simple randomized protocols offer superior convergence and stability as compared to deterministic counterparts. In addition, we show how randomization may allow us to outperform purely deterministic schemes at long times, including combinatorial and concatenated methods. General criteria for optimally interpolating between deterministic and stochastic design are proposed and illustrated in explicit decoupling scenarios relevant to quantum information storage.


Compressional Mode Softening And Euler Buckling Patterns In Mesoscopic Beams, W. E. Lawrence, M. N. Wybourne, S. M. Carr Oct 2006

Compressional Mode Softening And Euler Buckling Patterns In Mesoscopic Beams, W. E. Lawrence, M. N. Wybourne, S. M. Carr

Dartmouth Scholarship

We describe a sequence of Euler buckling instabilities associated with the transverse modes of a mesoscopic beam subjected to compressional strain. As the strain is increased, successively higher normal mode frequencies are driven to zero; each zero signals an instability in the corresponding normal mode that can be realized if all lower instabilities are suppressed by constraints. When expressed in terms of the critical buckling modes, the potential energy functional takes the form of a multimode Ginzburg–Landau system that describes static equilibria in the presence of symmetry breaking forces. This model is used to analyse the complex equilibrium shapes that …


Quantum Entanglement Via Nilpotent Polynomials, Aikaterini Mandilara, Vladimir M. Akulin, Andrei V. Smilga, Lorenza Viola Aug 2006

Quantum Entanglement Via Nilpotent Polynomials, Aikaterini Mandilara, Vladimir M. Akulin, Andrei V. Smilga, Lorenza Viola

Dartmouth Scholarship

We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion …


Exact Casimir Interaction Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, R. Onofrio Aug 2006

Exact Casimir Interaction Between Eccentric Cylinders, D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, R. Onofrio

Dartmouth Scholarship

The Casimir force is the ultimate background in ongoing searches for extragravitational forces in the micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spurious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and study different limiting cases of relevance for Casimir force measurements, with potential implications for the understanding of mechanical properties of nanotubes.


Detectability Of Dissipative Motion In Quantum Vacuum Via Superradiance, Woo-Joong Kim, James Hayden Brownell, Roberto Onofrio May 2006

Detectability Of Dissipative Motion In Quantum Vacuum Via Superradiance, Woo-Joong Kim, James Hayden Brownell, Roberto Onofrio

Dartmouth Scholarship

We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate mechanical energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio- frequency signal temporally distinguishable from the expected background.


Modeling The Pinning Of Au And Ni Clusters On Graphite, R. Smith, C. Nock, S. D. Kenny, Joseph J. Belbruno Mar 2006

Modeling The Pinning Of Au And Ni Clusters On Graphite, R. Smith, C. Nock, S. D. Kenny, Joseph J. Belbruno

Dartmouth Scholarship

The pinning of size-selected AuN and NiN clusters on graphite, for N=7–100, is investigated by means of molecular dynamics simulations and the results are compared to experiment and previous work with Ag clusters. Ab initio calculations of the binding of the metal adatom and dimers on a graphite surface are used to parametrize the potentials used in the simulations. The clusters are projected normally towards a graphite surface and the value of the energy at which pinning first occurs, EP, is determined. Pinning is shown to occur when a surface defect, made by the cluster interaction, is first produced. The …


Comparative Investigations Of Equatorial Electrodynamics And Low-To-Mid Latitude Coupling Of The Thermosphere-Ionosphere System, M J. Colerico, M Mendillo, C G. Fesen, J Meriwether Mar 2006

Comparative Investigations Of Equatorial Electrodynamics And Low-To-Mid Latitude Coupling Of The Thermosphere-Ionosphere System, M J. Colerico, M Mendillo, C G. Fesen, J Meriwether

Dartmouth Scholarship

The thermospheric midnight temperature maxi-

mum (MTM) is a highly variable, but persistent, large scale

neutral temperature enhancement which occurs at low lati-

tudes. Its occurrence can impact many fundamental upper

atmospheric parameters such as pressure, density, neutral

winds, neutral density, and F-region plasma. Although the

MTM has been the focus of several investigations employ-

ing various instrumentation including photometers, satellites,

and Fabry-Perot interferometers, limited knowledge exists

regarding the latitude extent of its influence on the upper at-

mosphere. This is largely due to observational limitations

which confined the collective geographic range to latitudes

within ±23◦. This paper investigates the …


The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me Mar 2006

The Structure Of Flux Transfer Events Recovered From Cluster Data, H Hasegawa, B U. Ö Sonnerup, C J. Owen, B Klecker, G Paschmann, A Balogh, H Re`Me

Dartmouth Scholarship

The structure and formation mechanism of a to- tal of five Flux Transfer Events (FTEs), encountered on the equatorward side of the northern cusp by the Cluster space- craft, with separation of ∼5000 km, are studied by apply- ing the Grad-Shafranov (GS) reconstruction technique to the events. The technique generates a magnetic field/plasma map of the FTE cross section, using combined magnetic field and plasma data from all four spacecraft, under the assump- tion that the structure is two-dimensional (2-D) and time- independent. The reconstructed FTEs consist of one or more magnetic flux ropes embedded in the magnetopause, suggest- ing …


Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson Mar 2006

Energy Landscape Of D -Dimensional Q -Balls, Marcelo Gleiser, Joel Thorarinson

Dartmouth Scholarship

We investigate the properties of Q-balls in d spatial dimensions. First, a generalized virial relation for these objects is obtained. We then focus on potentials V(ϕϕ†)=∑3n=1an(ϕϕ†)n, where an is a constant and n is an integer, obtaining variational estimates for their energies for arbitrary charge Q. These analytical estimates are contrasted with numerical results and their accuracy evaluated. Based on the results, we offer a simple criterion to classify large and small d-dimensional Q-balls for this class of potentials. A minimum charge is then computed and its dependence on spatial dimensionality is shown to scale as Qmin∼exp(d). We also briefly …


Orientation Of Optically Trapped Nonspherical Birefringent Particles, Wolfgang Singer, Timo A. Nieminen, Ursula J. Gibson, Norman R. Heckenberg Feb 2006

Orientation Of Optically Trapped Nonspherical Birefringent Particles, Wolfgang Singer, Timo A. Nieminen, Ursula J. Gibson, Norman R. Heckenberg

Dartmouth Scholarship

While the alignment and rotation of microparticles in optical traps have received increased attention recently, one of the earliest examples has been almost totally neglected—the alignment of particles relative to the beam axis, as opposed to about the beam axis. However, since the alignment torques determine how particles align in a trap, they are directly relevant to practical applications. Lysozyme crystals are an ideal model system to study factors determining the orientation of nonspherical birefringent particles in a trap. Both their size and their aspect ratio can be controlled by the growth parameters, and their regular shape makes computational modeling …


Fluid-Solid Transition In A Hard-Core System, Lewis Bowen, Russell Lyons, Charles Radin, Peter Winkler Jan 2006

Fluid-Solid Transition In A Hard-Core System, Lewis Bowen, Russell Lyons, Charles Radin, Peter Winkler

Dartmouth Scholarship

We prove that a system of particles in the plane, interacting only with a certain hard-core constraint, undergoes a fluid-solid phase transition.