Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Entire DC Network

Structuring Emperical Methods For Reuse And Efficiency In Product Development Processes, Marshall Edwin Bare Dec 2006

Structuring Emperical Methods For Reuse And Efficiency In Product Development Processes, Marshall Edwin Bare

Theses and Dissertations

Product development requires that engineers have the ability to predict product performance. When product performance involves complex physics and natural phenomena, mathematical models are often insufficient to provide accurate predictions. Engineering companies compensate for this deficiency by testing prototypes to obtain empirical data that can be used in place of predictive models. The purpose of this work is to provide techniques and methods for efficient use of empirical methods in product development processes. Empirical methods involve the design and creation of prototype hardware and the testing of that hardware in controlled environments. Empirical methods represent a complete product development sub-cycle ...


Constitutive Modeling Of The Thermo-Mechanics Associated With Crystallizable Shape Memory Polymers, Gautam Barot Aug 2006

Constitutive Modeling Of The Thermo-Mechanics Associated With Crystallizable Shape Memory Polymers, Gautam Barot

Dissertations

This research addresses issues central to material modeling and process simulations. Here, issues related for developing constitutive model for crystallizable shape memory polymers are addressed in details. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Crystallizable shape memory polymers are called crystallizable because the temporary shape is fixed by a crystalline phase, while return to the original shape ...


Preliminary Modeling, Control, And Trajectory Design For Miniature Autonomous Tailsitters, Nathan B. Knoebel, Stephen R. Osborne, Deryl Snyder, Timothy W. Mclain, Randal W. Beard, Andrew Mark Eldredge Aug 2006

Preliminary Modeling, Control, And Trajectory Design For Miniature Autonomous Tailsitters, Nathan B. Knoebel, Stephen R. Osborne, Deryl Snyder, Timothy W. Mclain, Randal W. Beard, Andrew Mark Eldredge

Faculty Publications

A tailsitter UAV has unique advantages over typical fixed wing aircraft or hovercraft. This paper highlights topics of interest in our preliminary research in developing a tailsitter UAV. An aerodynamic model and quaternion-based attitude and position control scheme is presented for controlling a tailsitter through hover maneuvers, with simulation results. Desired trajectories are also developed through feedback linearization of the dynamic equations, intended for quaternion-based attitude control. Finally, a hardware platform is proposed.


Modeling Of The Effects Of Athermal Flow Strength And Activation Energy For Dislocation Glide On The Nanoindentation Creep Of Nickel Thin Film At Room Temperature Jan 2006

Modeling Of The Effects Of Athermal Flow Strength And Activation Energy For Dislocation Glide On The Nanoindentation Creep Of Nickel Thin Film At Room Temperature

A.S. Md Abdul Haseeb

Nanoindentation creep behaviour of nickel at room temperature has been modeled based on the obstacle-controlled dislocation glide mechanism. Using the model, the effects of two important materials parameters viz. the activation free energy required by dislocation to overcome an obstacle without any aid from external stress, ΔF and the athermal flow strength, τ0, which is the flow strength of solids at 0 K are systematically studied. It has been found that ΔF plays a dominant role in room temperature creep properties of nickel. The role of ΔF is particularly dominant in determining the time dependent deformation. On the other hand ...


Performance Modeling Of Explosively Actuated Devices, Adam M. Braud Jan 2006

Performance Modeling Of Explosively Actuated Devices, Adam M. Braud

LSU Master's Theses

Explosively actuated devices (pin pullers, cable cutters, valves, etc) are used extensively to perform critical functions for aerospace, industrial, and defense related applications. The failure of these devices have led to a greater effort to quantify device design and performance. This thesis describes the actuation process of an explosively actuated valve, including: 1) the burning of the solid explosive HMX (C4H8N8O8) and production of its high pressure gas products, 2) the mass transfer of gas products through an actuator to an expansion volume including choked flow effects, 3) the resulting piston motion due ...


Techniques In The Design Of Thermomechanical Microactuators, Larry L. Howell, Timothy W. Mclain, Michael S. Baker, Christian D. Lott Jan 2006

Techniques In The Design Of Thermomechanical Microactuators, Larry L. Howell, Timothy W. Mclain, Michael S. Baker, Christian D. Lott

Faculty Publications

The purpose of this chapter is to provide fundamental background for the design of thermomechanical microactuators. Actuation has been a particularly challenging aspect of microsystem development. Many actuation approaches used at the macro level, such as hydraulics, pneumatics, electric motors, internal combustion engines and turbines, are either too difficult to fabricate at the micro level or do not work well at that scale. Electrostatic attraction is one approach that has been widely used for actuation of microsystems; however, electrostatic actuators tend to have high voltage requirements and low output force capabilities. While electrostatic actuation is suitable for many applications, some ...


Modeling Of The Effects Of Athermal Flow Strength And Activation Energy For Dislocation Glide On The Nanoindentation Creep Of Nickel Thin Film At Room Temperature Dec 2005

Modeling Of The Effects Of Athermal Flow Strength And Activation Energy For Dislocation Glide On The Nanoindentation Creep Of Nickel Thin Film At Room Temperature

A.S. Md Abdul Haseeb

Nanoindentation creep behaviour of nickel at room temperature has been modeled based on the obstacle-controlled dislocation glide mechanism. Using the model, the effects of two important materials parameters viz. the activation free energy required by dislocation to overcome an obstacle without any aid from external stress, ΔF and the athermal flow strength, τ0, which is the flow strength of solids at 0 K are systematically studied. It has been found that ΔF plays a dominant role in room temperature creep properties of nickel. The role of ΔF is particularly dominant in determining the time dependent deformation. On the other hand ...