Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Numerical Simulations Of Gas-Liquid Flow Dynamics In Bubble Columns, Deify Law, Francine Battaglia, Theodore J. Heindel Nov 2006

Numerical Simulations Of Gas-Liquid Flow Dynamics In Bubble Columns, Deify Law, Francine Battaglia, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

There is great potential for using computational fluid dynamics (CFD) as a tool in scale-up and design of bubble columns. Full-scale experimentation in bubble columns is expensive and CFD is an alternative approach to study bubble column hydrodynamics. However, CFD can be computationally intensive as a predictive tool for a full three-dimensional geometry. In this paper, a 0.2 m diameter semi-batch bubble column is numerically simulated and the results are compared to experimental measurements performed by Rampure et al. [1]. The objectives are to examine and determine an appropriate set of numerical parameters and to determine if two-dimensional simulations ...


Similitude Analysis For Gas-Liquid-Fiber Flows In Cocurrent Bubble Columns, Chengzhi Tang, Theodore J. Heindel Jul 2006

Similitude Analysis For Gas-Liquid-Fiber Flows In Cocurrent Bubble Columns, Chengzhi Tang, Theodore J. Heindel

Mechanical Engineering Conference Presentations, Papers, and Proceedings

Gas-liquid-fiber systems are different from conventional gas-liquid-solid systems in that the solid material (i.e., fiber) is flexible, has a large aspect ratio, and forms flocs or networks when its mass fraction is above a critical value. With its wide application to the pulp and paper industry, it is important to investigate the hydrodynamics of gas-liquid-fiber systems. In this paper, 19 parameters that influence gas holdup in gas-liquid-fiber bubble columns are critically examined and then a dimensional analysis based on the Buckingham Pi Theorem is used to derive the dimensionless parameters governing gas-liquid-fiber bubble column hydrodynamics. Seven dimensionless parameters that ...


Two-Phase Flow In High Aspect Ratio, Polymer Microchannels For Reagent Delivery Applications, Estelle Evans Jan 2006

Two-Phase Flow In High Aspect Ratio, Polymer Microchannels For Reagent Delivery Applications, Estelle Evans

LSU Master's Theses

Multiphase flow in microfluidics is an increasingly growing field, especially in biotechnology. For instance, a steady-state slug flow would benefit lab-on-a-chip drug delivery methods. This flow would not only use minute amounts of reagents, but it would also decrease the sample processing time. Thus, researching a steady-state plug flow in a microchannel is beneficial to the drug delivery field. Five PMMA, directly-milled microchannels [2: Aspect Ratio 1 (with and without pressure ports, 2): Aspect ratio 2 (with and without pressure ports), and 1: Aspect Ratio 3 (without pressure ports)] were manufactured. These channels were then cleaned, and a PMMA cover ...