Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2006

Mechanical Engineering

Series

Distributed Parameter Systems

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Optimal Management Of Beaver Population Using A Reduced-Order Distributed Parameter Model And Single Network Adaptive Critics, Radhakant Padhi, S. N. Balakrishnan Jan 2006

Optimal Management Of Beaver Population Using A Reduced-Order Distributed Parameter Model And Single Network Adaptive Critics, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired …


An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan Jan 2006

An Optimal Dynamic Inversion Approach For Controlling A Class Of One-Dimensional Nonlinear Distributed Parameter Systems, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a …