Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Titanium Alloyed With Boron, Seshacharyulu Tamirisakandala, Daniel B. Miracle, Raghavan Srinivasan, Jay S. Gunasekera Dec 2006

Titanium Alloyed With Boron, Seshacharyulu Tamirisakandala, Daniel B. Miracle, Raghavan Srinivasan, Jay S. Gunasekera

Mechanical and Materials Engineering Faculty Publications

Small additions of boron to conventional titanium alloys have been found to produce significant changes to the microstructures and associated properties. Grain refinement and improved strength and stiffness are first-order effects, which lead to possibilities for developing novel and affordable processing methodologies and to enhance performance over conventional titanium alloys. In this article, we introduce this new class of titanium alloys and describe unique formability benefits achieved via engineering microstructures.


Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li Jul 2006

Self-Assembled Composite Nano-/Micronecklaces With Sio2 Beads In Boron Strings, Hai Ni, Xiaodong Li

Faculty Publications

Nano-/micronecklaces with SiO2 beads in boron strings were synthesized by simply sublimating the desired powders in a sealed quartz tube at high temperature. The boron strings have a rectangular cross section with width varying from 80to1000nm while the SiO2 beads bear either spindle or spherical shape with a size ranging from 100nmto5μm. The spacing between the SiO2 beads is uniform in each boron string. Both the boron strings and the SiO2 beads are amorphous and free of defects. The supersaturated vapors of silicon and oxygen induced the SiO2 bead formation.