Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2006

Mechanical Engineering

Theses and Dissertations

Motor

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Design Of A Linear Ultrasonic Piezoelectric Motor, Scott L. Sharp Jul 2006

Design Of A Linear Ultrasonic Piezoelectric Motor, Scott L. Sharp

Theses and Dissertations

A new geometrically unique ultrasonic motor (USM) was designed using finite element modeling (FEM). A USM operates by vibrating a drive tip in an elliptical motion while it is in periodic contact with a driven surface. Piezoelectric elements are used to create the elliptical motions and are driven near a resonant frequency to create the needed displacements for the motor to operate. An idea for a motor frame was conceived that consisted of an arch, a center ground, and two piezoelectric elements connected to the center ground. End caps were added between the frame and the piezoelectric elements to reduce ...


Settling-Time Improvements In Positioning Machines Subject To Nonlinear Friction Using Adaptive Impulse Control, Tim Hakala Jan 2006

Settling-Time Improvements In Positioning Machines Subject To Nonlinear Friction Using Adaptive Impulse Control, Tim Hakala

Theses and Dissertations

A new method of adaptive impulse control is developed to precisely and quickly control the position of machine components subject to friction. Friction dominates the forces affecting fine positioning dynamics. Friction can depend on payload, velocity, step size, path, initial position, temperature, and other variables. Control problems such as steady-state error and limit cycles often arise when applying conventional control techniques to the position control problem. Studies in the last few decades have shown that impulsive control can produce repeatable displacements as small as ten nanometers without limit cycles or steady-state error in machines subject to dry sliding friction. These ...