Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2006

Mechanical Engineering

Theses and Dissertations

Compliant mechanisms

Articles 1 - 4 of 4

Full-Text Articles in Entire DC Network

The Piezoresistive Effect In Microflexures, Gary K. Johns Dec 2006

The Piezoresistive Effect In Microflexures, Gary K. Johns

Theses and Dissertations

The objective of this research is to present a new model for predicting the piezoresistive effect in microflexures experiencing bending stresses. A linear model describing piezoresistivity exists for members in pure tension and compression. Extensions of this model to more complex loading conditions do not match experimental results. An accurate model of piezoresistivity in complex loading conditions would expand the design possibilities of piezoresistive devices. A new model to predict piezoresistive effects in tension, compression, and more complex loading conditions is proposed. The focus of this research is to verify a unidirectional form of this proposed model for microflexures in ...


Design And Fabrication Of Rotationally Tristable Compliant Mechanisms, Tyler M. Pendleton Sep 2006

Design And Fabrication Of Rotationally Tristable Compliant Mechanisms, Tyler M. Pendleton

Theses and Dissertations

The purpose of this research is to develop the tools necessary to create tristable compliant mechanisms; the work presents the creation of models and concepts for design and a demonstration of the feasibility of the designs through the fabrication of tristable compliant mechanism prototypes on the macro scale. Prior methods to achieve tristable mechanisms rely on detents, friction, or power input; disadvantages to these methods include a high number of parts, the necessity for lubrication, and wear. A compliant tristable mechanism accomplishes tristability through strain energy storage. These mechanisms would be preferable because of increased performance and cost savings due ...


Design Of Piezoresistive Mems Force And Displacement Sensors, Tyler Lane Waterfall Sep 2006

Design Of Piezoresistive Mems Force And Displacement Sensors, Tyler Lane Waterfall

Theses and Dissertations

MEMS (MicroElectroMechanical Systems) sensors are used in acceleration, flow, pressure and force sensing applications on the micro and macro levels. Much research has focused on improving sensor precision, range, reliability, and ease of manufacture and operation. One exciting possibility for improving the capability of micro sensors lies in exploiting the piezoresistive properties of silicon, the material of choice in many MEMS fabrication processes. Piezoresistivity—the change of electrical resistance due to an applied strain—is a valuable material property of silicon due to its potential for high signal output and on-chip and feedback-control possibilities. However, successful design of piezoresistive micro ...


Development Of A Strain Energy Storage Mechanism Using Tension Elements To Enhance Golf Club Performance, Marc A. Whitezell Mar 2006

Development Of A Strain Energy Storage Mechanism Using Tension Elements To Enhance Golf Club Performance, Marc A. Whitezell

Theses and Dissertations

The development of current golf club designs has followed an evolutionary process starting with the original wooden heads of a hundred years ago, to the thin-walled, hollow body titanium heads of today. Current designs utilize what has become known as the trampoline effect to increase the efficiency of the ball-club impact, which has a number of limiting factors that restrict clubhead performance. These limitations provided the motivation for this research to explore new mechanisms by which the efficiency of the ball club impact could be increased. In particular this research focuses on the development of compliant mechanisms to increase club ...