Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

PDF

2006

Mechanical Engineering

Mechanical and Aerospace Engineering Faculty Publications

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

A Lifting-Line Approach To Estimating Propeller/Wing Interactions, Doug F. Hunsaker, Deryl O. Snyder Jun 2006

A Lifting-Line Approach To Estimating Propeller/Wing Interactions, Doug F. Hunsaker, Deryl O. Snyder

Mechanical and Aerospace Engineering Faculty Publications

A combined wing and propeller model is presented as a low-cost approach to first-cut modeling of slipstream effects on a finite wing. The wing aerodynamic model employs a numerical lifting-line method utilizing the 3D vortex lifting law along with known 2D airfoil data to predict the lift distribution across a wing for a prescribed upstream flowfield. The propeller/slipstream model uses a blade element theory combined with momentum conservation equations. This model is expected to be of significant importance in the design of tail-sitter vertical take-off and landing (VTOL) aircraft, where the propeller slipstream is the primary source of air ...


Energy Efficient Process Heating: Insulation And Thermal Mass, Kevin Carpenter, J. Kelly Kissock Apr 2006

Energy Efficient Process Heating: Insulation And Thermal Mass, Kevin Carpenter, J. Kelly Kissock

Mechanical and Aerospace Engineering Faculty Publications

Open tanks and exterior surfaces of process heating equipment lose heat to the surroundings via convection, radiation, and/or evaporation. A practical way of reducing heat loss is by insulating or covering the surfaces. This paper presents methods to quantify heat loss and energy savings from insulating hot surfaces and open tanks. The methods include radiation and evaporation losses, which are ignored by simplified methods. In addition, thermal mass, such as refractory, conveyor and racking equipment, acts as a heat sink and increases heating energy use in process heating applications. This paper presents lumped capacitance and finite-difference methods for estimating ...


Energy Efficient Process Heating: Managing Air Flow, Kevin Carpenter, J. Kelly Kissock Apr 2006

Energy Efficient Process Heating: Managing Air Flow, Kevin Carpenter, J. Kelly Kissock

Mechanical and Aerospace Engineering Faculty Publications

Much energy is lost through excess air flow in and out of process heating equipment. Energy saving opportunities from managing air flow include minimizing combustion air, preheating combustion air, minimizing ventilation air, and reconfiguring openings to reduce leakage.

This paper identifies these opportunities and presents methods to quantify potential energy savings from implementing these energy-savings measures. Case study examples are used to demonstrate the methods and the potential energy savings.The method for calculating savings from minimizing combustion air accounts for improvement in efficiency from increased combustion temperature and decreased combustion gas mass flow rate.

The method for calculating savings ...


Measuring Plant-Wide Energy Savings, J. Kelly Kissock, Carl Eger Apr 2006

Measuring Plant-Wide Energy Savings, J. Kelly Kissock, Carl Eger

Mechanical and Aerospace Engineering Faculty Publications

This paper presents a general method for measuring plant-wide industrial energy savings and demonstrates the method using a case study from an actual industrial energy assessment. The method uses regression models to characterize baseline energy use. It takes into account changes in weather and production, and can use sub-metered data or whole plant utility billing data. In addition to calculating overall savings, the method is also able to disaggregate savings into components, which provides additional insight into the effectiveness of the individual savings measures.

Although the method incorporates search techniques and multi-variable least-squares regression, it is easily implemented using data ...


Design Of 'Iris', A Small Autonomous Surveillance Uav, Jennifer Boyce, Ryan Carr, Donovan Chipman, Greg Larson, Nathan Hopkins, Doug F. Hunsaker, W. Jerry Bowman Jan 2006

Design Of 'Iris', A Small Autonomous Surveillance Uav, Jennifer Boyce, Ryan Carr, Donovan Chipman, Greg Larson, Nathan Hopkins, Doug F. Hunsaker, W. Jerry Bowman

Mechanical and Aerospace Engineering Faculty Publications

No abstract provided.


The Girl Scout Climbing Wall Multidisciplinary Service-Learning Project, Margaret Pinnell, Corinne M. Daprano, Gabrielle Williamson Jan 2006

The Girl Scout Climbing Wall Multidisciplinary Service-Learning Project, Margaret Pinnell, Corinne M. Daprano, Gabrielle Williamson

Mechanical and Aerospace Engineering Faculty Publications

The Girl Scout Wall (GS Wall) project was implemented in two classes at the University of Dayton (UD): a Mechanical and Aerospace Engineering (MAE) course, and a Health and Sports Science (HSS) course, and Sport Facility Management. The MAE course, Introduction to Materials, is a three-credit, third-year required course where students learn about the basic structure and properties of materials as well as the principles of material selection. The Sport Facility Management course is a three-semester hour, required HSS course where students are introduced to the processes of planning, constructing, equipping, maintaining, and managing sport facilities.